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Chapter

Introduction

The term biometrics refers to the technologies that measure and analyze human in-
trinsic physical (such as fingerprints, face, iris) or behavioral (such as signature, voice,
gait) characteristics for authenticating individuals.

Nowadays, biometric technology is increasingly deployed in civil and commercial ap-
plications. The growing use of biometrics is raising security and privacy concerns
about the biometric technology. Storing biometric data, known as biometric tem-
plates, in a database leads to several privacy risks such as identity fraud and cross
matching. A solution is to apply biometric template protection techniques, which aim
to make it impossible to recover the biometric data from the templates.

The goal of our research is to combine biometric systems with template protection.
Aimed at fingerprint recognition, this thesis introduces the Spectral Minutiae Rep-
resentation method, which enables the combination of a minutiae-based fingerprint
recognition system with template protection schemes based on fuzzy commitment or
helper data schemes.

1.1 Biometrics and Fingerprints

Recognition of individuals by means of biometric characteristics is gaining importance
because of several reasons: first, unlike passwords, PIN codes or tokens, biometric
identifiers cannot be forgotten or lost, and they add to user convenience since they
are always at hand; second, a biometric identifier is tightly linked to an individual,
therefore, it cannot easily be forged or shared.

When constructing a biometric system, there are several issues that need to be consid-
ered when selecting a biometric characteristic, including universality, distinctiveness,
permanence, performance, acceptability and so on [1]. Currently, fingerprint is the
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most commonly used biometric modality. Compared with various biometric charac-
teristics, such as face, signature and voice, the fingerprint has high levels of distinc-
tiveness, permanence and performance and at the same time it has the advantages of
both ease of use and low cost. The biometric revenues estimated by International Bio-
metric Group in 2009 [2] shows that fingerprint continues to be the leading biometric
technology in terms of market share. Concerning the user acceptance of biometrics,
the report by Unisys Security Index in December 2008 reveals that biometric technolo-
gies are becoming increasingly familiar and accepted, and among various biometric
modalities, fingerprint is the most acceptable biometric technology [3].

1.1.1 Fingerprint features

Maltoni et al. [1] put fingerprint features into three categories: Global level, Local level
and Very-fine level. The features at the global level are based on the fingerprint ridge
flow pattern, such as directional field, singular points and frequency image. These fea-
tures are not discriminative enough for very accurate recognition, but they are more
robust to quality degradation, and they are also very useful for fingerprint classifica-
tion and indexing [4,5]. They can also be used as auxiliary data to assist fingerprint
recognition. The features at the local level are the local ridge characteristics. Minu-
tiae are the most prominent ridge characteristics. They are very discriminative and
suitable for accurate recognition. The features at the very-fine level are intra-ridge
details, such as sweat pores. Extracting such features is only feasible for good quality,
high-resolution fingerprints, which are not available in most practical applications.
We summarize the characteristics of each category in Table 1.1.

Table 1.1: Fingerprint features and their characteristics.

‘ Types ‘ Scale Examples Characteristics

Level 1 Global level singular points | +Robust to low-quality fingerprints

directional field | —Moderately discriminative

Level 2 Local level minutiae +High discriminative
+Mature techniques
—Unreliable automatic minutiae

extraction for low-quality fingerprints

Level 3 | Very-fine level sweat pores +Enhance individuality

—Require high resolution sensor

The research in this thesis is mainly based on the fingerprint minutiae features. Minu-
tiae are the endpoints and bifurcations of fingerprint ridges, see Figure 1.1. Each
minutia can be described by several attributes, such as type (e.g., ridge ending or
ridge bifurcation), its location in the fingerprint image and orientation. The most
commonly used parameters for minutiae comparison algorithms are (z,y,0), where
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Fig. 1.1: Minutiae of a fingerprint.

(z,y) is the location of the minutia and 6 its orientation [1]. They are known to
remain unchanged over an individual’s lifetime and allow a very discriminative classi-
fication of fingerprints. There are a large number of academic research activities and
commercial applications on fingerprint minutiae extraction and comparison (match-
ing) [6-17].

1.1.2 Applications characteristics of biometric systems

When designing a biometric recognition system, analyzing the application charac-
teristics is very important. Wayman et al. [18] suggest that a biometric recognition
application can be understood by following characteristics:

1. Cooperative vs. non-cooperative. This property can also be referred to as ‘pos-
itive’ and ‘negative’ recognition application. In a cooperative application, the
individual needs to prove that he/she is someone known to the system, while in
a non-cooperative application, the individual needs to prove that he/she is not
someone known to the system. For example, a company’s employee entrance con-
trol using biometrics is a cooperative application, whereas an airport application
for detecting terrorists is a non-cooperative application.

2. Overt vs. covert. If the subject is aware that his/her biometric characteristic is
being measured for authentication, such application is overt. Otherwise, it is an
covert application.

3. Habituated vs. non-habituated. This property indicates how often the individuals
in the application will interact with the biometric system. ‘Habituated’ individuals
imply that the individuals are familiar with the system, and this will give a positive
effect on the recognition performance.
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4. Attended vs. non-attended. This property indicates whether the process of bio-
metric data acquisition will be observed and guided by system management (for
example, a system administrator).

5. Standard vs. non-standard environment. This property indicates whether the ap-
plication is operated in a controlled environment (such as temperature, pressure,
moisture, lighting conditions). Generally, an indoor application is in a standard
environment, whereas an outdoor application is considered as a non-standard en-
vironment application.

6. Public vs. private. This property indicates whether the individuals of the system
are customers (public) or employees (private) of the system management.

7. Open vs. closed. This property indicates whether the biometric data are used by
a single (closed) or multiple (open) applications. In an open application, the inter-
operability is an important issue and data and processing standards are required.

1.1.3 Terms and definitions

In this section, we will list some relevant terms and definitions of biometrics. For com-
prehensive background knowledge and a broader biometric vocabulary, we recommend
the readers references [1,19,20].

1.1.3.1 Biometric Applications

Depending on the application context, a biometric system can operate in either veri-
fication or identification mode.

Verification: the verification process is to confirm (or verify) a biometric claim through
biometric comparisons. A verification system implements a one-to-one comparison.

Identification: in the identification process, the system compares the feature extracted
from the live-scanned biometric sample against all the templates in the database. An
identification system implements a one-to-many comparison.

Recognition: biometric recognition is a general term for both biometric verification
and biometric identification.

The structure diagram of a fingerprint verification system is shown in Figure 1.2,
which includes several important parts:

Biometric Database: the database of biometric data record(s). Depending on the ap-
plication, the biometric database can be a very large database (e.g., for the US-VISIT
system [21]), a normal size database (e.g., for a building’s access control system), or a
single subject database (e.g., a cardholder’s biometric template(s) stored on a smart
card).

Enrollment: the process for registering individuals in a biometric system. During
the enrollment process, the individual’s biometric characteristics will be captured
by a sensor, and the biometric template will be finally created and stored into the
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Fig. 1.2: The structure diagram of a fingerprint verification system.

database. The template created during enrollment is called reference template and
it will be compared later with a test template during verification or identification
process.

Feature extraction: in order to facilitate comparison, the biometric features (such
as fingerprint minutiae) will be extracted from the raw digital sample (such as a
fingerprint image). This process is called feature extraction.

Comparison: during verification or identification, the test template will be compared
with the reference template. Normally, in this process, the system will first compute
a number (called similarity/dissimilarity score or matching score), which corresponds
to the degree of similarity/dissimilarity between the reference and test templates.
Finally, by using a system threshold, the final decisions (accept/reject or match/non-
match) will be made.

1.1.3.2 Performance indicators

The recognition performance of a fingerprint verification system can be evaluated by
means of several measures. During the comparison process, a fingerprint verification
system can make two types of errors: false match, accepting the fingerprints from
two individuals; false non-match, rejecting the fingerprints from the same individual.
For a positive biometric verification system, these two types of errors are often de-
noted as false acceptance and false rejection. In this thesis, we will use the following
performance indicators to evaluate the recognition performance of our system?.

The False Acceptance Rate (FAR) is the probability that the system outputs a ‘match’
decision for fingerprints that are not from the same finger.

L According to ISO/IEC 19795-1, Information technology - Biometric performance testing and
reporting - Part 1: Principles and framework [22], the terms false match and false non-match refer
to the errors of the algorithm. The terms false acceptance and false rejection refer to the errors made
by the entire system. In many publications, including this thesis, the terms false acceptance and
false rejection are also used to evaluate the algorithm.
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The Fualse Rejection Rate (FRR) is the probability that the system outputs a ‘non-
match’ decision for the fingerprints from the same finger.

The Equal Error Rate (EER): when the decision threshold of a biometric verification
system is set such that the FAR and FRR are equal, the common value of FAR and
FRR is referred to as the EER.

The Genuine Acceptance Rate (GAR), GAR= 1-FRR, is the probability that the
system outputs a ‘match’ decision for fingerprints that are from the same finger.

The GAR/FRR given at a certain FAR: for different applications, the required FAR
or FRR are different. For example, a home network application may require low FRR
for user convenience. For high security applications, a low FAR is very important. In
this thesis, we will use the GARQFAR=0.1% as a performance measure.

The Receiwer Operating Characteristics (ROC) curve: in signal detection theory, a
ROC curve is a graphical plot of false positives against true positives. For biomet-
rics, the ROC curve plots the FAR against the GAR. The ROC curve is threshold
independent and it presents the performance of a biometric system under different
threshold settings. The ROC curves also allow a flexible performance comparison of
different systems.

The Detection Error Trade-off (DET) curve: the DET curve is a variant of the ROC
curve. It plots the FAR against the FRR. It gives a visual characterization of the
trade-off between the FAR and the FRR.

1.2 Biometric Template Protection

In the previous section, we introduced the advantages of using biometrics to en-
hance security. Nowadays, biometric technology is increasingly deployed in civil and
commercial applications. For example, in October 2001, the Dutch airport Schiphol
launched an automated border passage system using iris recognition for safer and
faster border control. Now this system has become a permanent facility at Schiphol.
In 2004, the U.S. immigration and border management system US-VISIT, involving
the collection and analysis of biometric data, became operational [21]. Later in Eu-
rope, in order to detect counterfeit or manipulated documents and to confirm the
identification of the individual, the Council of the European Union (EU) adopted the
Biometric Passports Regulation. It states that the Schengen regime and Schengen-
affiliated third countries like Norway are obliged to include two biometric identifers
(face and fingerprints) into their citizen’s passports by the end of June 2009 [23].

The growing use of biometrics in various cases, especially in civil applications, is rais-
ing privacy concerns about the biometric technology. There are several privacy threats
to biometrics: (1) Impersonation: when an attacker steals a biometric template, he
might construct artificial biometric identifiers that pass authentication. (2) Irrevo-
cability: unlike passwords, biometric characteristics cannot be updated, reissued or
destroyed. Thus, once lost, lost forever. (3) Privacy: since biometric data is sensitive
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personal information, in many countries, protecting the stored personal information,
including biometric data, is regulated by legislation. (4) Cross-matching: the biomet-
ric templates can be used by an attacker to perform cross-matching between databases
and track people’s behavior.

A solution to solve the above-mentioned problems is to apply template protection
techniques. ISO is supporting this strategy with a new standard on privacy compli-
ant biometric systems: in 2010, a completed final committee draft ISO/IEC 24745 -
Information technology - Security techniques - Biometric information protection has
been issued [24,25]. In this draft standard, several requirements to protect an indi-
vidual’s privacy in a biometric context are described:

Renewability. Once a biometric template is compromised, it should be possible
to generate a new template from the same biometric characteristic. Renewability,
also referred to as revocability or cancelable?, is an important property to deal with
identity theft. It should be noted that the renewability property may also be needed
for other reasons: for example, a biometric reference may only be valid for a limited
period for higher security. In this case, the system should be able to renew, revoke or
replace the reference.

Unlinkability. The biometric references used in different applications shall not be
linkable. This is to prevent the attacker to trace a person’s behavior by using the
biometric reference as a unique identifier to link across different applications (i.e.,
cross-matching threats).

Irreversibility. To prevent the unauthorized use of biometric data for any purpose
other than originally intended, it should be computationally infeasible to obtain the
unprotected biometric template from the protected template. Generally the original
biometric features need to be transformed to satisfy this requirement. Thus, it results
in a biometric comparison of the protected templates in a transformed space.

Biometric template protection, defined as protecting the biometric data stored in a
database, has received significant attention from the research community. To have
an overview of the existing template protection schemes, the readers can refer to [26]
and [27].

1.3 Purpose of the Research

In the previous sections, we discussed the importance of deploying biometric technol-
ogy to enhance security and user convenience, and the necessity of biometric template
protection due to privacy concerns. The research described in this thesis is done in the
context of two projects: the Protection of Biometric Template (ProBiTe) project 3

2There are trivial differences between the concepts of ‘renewability’ and ‘revocability’. In this
thesis, we will not give emphasis on their differences.

3The ProBiTe project is supported by the Dutch Technology Foundation STW
(http://www.stw.nl) and the research program Sentinels (http://www.sentinels.nl).
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and the TrUsted Revocable Biometric IdeNtitiEs (TURBINE) project . Both projects
concern the integration of biometric recognition in security systems and target on the
privacy enhancing technology solution for biometric recognition systems.

The goal of our research is to solve the problems of combining biometric recognition
and template protection. Template protection techniques can be applied to all sorts of
biometric data. In both ProBiTe and TURBINE, the research on biometrics focuses on
the fingerprint recognition system, because fingerprint is the most accepted biometric
characteristic and it combines ease of use with a good recognition performance. From
the biometric aspect, the main research question is:

How can we combine a fingerprint recognition system with template pro-
tection schemes?

To answer this research question, we need to first consider three aspects:

Aspect I: Selection of the target application. First of all, we need to under-
stand the application. What is the target application of the ProBiTe and TURBINE
projects? The design of our algorithms should focus on the application requirements.

Aspect II: Selection of a template protection scheme. There are different tem-
plate protection schemes on noisy data (including biometric templates) [26] and [27].
Which template protection scheme should we choose?

Aspect III: Selection of fingerprint features. In Section 1.1.1, we introduced
different fingerprint features. We now have to decide on which features we should
focus our research.

Next, we will discuss these three aspects.

1.3.1 Selection of the target application

The target application of the ProBiTe project is using biometrics in a home network
to enhance the ease of use. Besides the applications in a home network, the results
of this project can also be applied in financial domains, border control, ICT and con-
sumer electronics. Compared with ProBiTe, TURBINE addresses a broader scope
of application domains, including eGovernment, eHealth, eID, eBanking, physical ac-
cess control, and mobile telecommunications, but the main focus is border control.
The target of both projects is to cope with the privacy risks in biometric systems.
Based on the application characteristics introduced in 1.1.2, our application charac-
teristics can be summarized as: cooperative, overt, habituated, attended enrollment
and non-attended recognition, standard environment, both public and private, closed.

Based on our application characteristics, in our research, we can assume that the
target biometric data subjects are cooperative to the system, and they are familiar
with how to interact with the system. Since the target application is operated in a

4The TURBINE research project (http://www.turbine-project.eu) is financed by the European
Community’s 7th Framework Programme.



1.3 Purpose of the Research 9

standard environment, coping with very poor quality fingerprints due to extremely
wet /dry fingers will not be our main concern.

1.3.2 Selection of a template protection scheme

We will first present a brief review of several existing fingerprint template protection
schemes. Ratha et al. [28] proposed the Cancelable Fingerprint Template by applying
non-invertible transforms on fingerprint features. The challenges of their work are
both designing ‘non-invertibility’ transforms and preventing losing recognition per-
formance in the transformed space as well. Boult et al. [29] introduced the Revocable
Fingerprint Biotokens that separates fingerprint data into two parts: the encrypted
part to enhance the privacy, and the unencrypted part to assist the fingerprint recog-
nition. The initial attempt of this algorithm received promising results. However, this
method need to be changed or adjusted when applied to other biometric features, and
some template protection requirements (such as ‘unlinkability’) still need to be an-
alyzed. Another popular method is the Fuzzy Vault scheme, proposed by Juels and
Sudan [30]. It has been implemented for fingerprints [31,32]. However, these im-
plementations require an absolute pre-alignment of fingerprints, which is error-prone.
And both the recognition performance and the comparison speed from these attempts
are also not satisfying.

In this thesis, our algorithms target on combining fingerprint recognition systems
with template protection schemes based on Fuzzy Commitment and the Helper Data
scheme, such as [5] and [33]. These two schemes are equivalent. The helper data
scheme can be regarded as fuzzy commitment together with a quantization scheme
using helper data. Figure 1.3 shows the architecture of a helper data scheme. The
reader is referred to [33] for an explanation of this figure.

In both ProBiTe and TURBINE, the helper data scheme was chosen as the template
protection solution. The helper data scheme is one of the simplest constructions for
cryptography over noisy data, thus, it is not restricted to certain biometric charac-
teristics or feature formats. Furthermore, this approach is tolerant to within-class
variance in biometric data and this tolerance is determined by the error correcting
capability of the underlying error correcting code.

The template protection based on the helper data scheme puts several constraints to
the fingerprint recognition system. (1) It requires a fixed-length feature vector, which

is ordered, as input. This means that the symbols X, and Xi, in Figure 1.3 must
represent fixed-length feature vectors. (2) When combining biometric systems with
template protection schemes, the biometric features will be compared in a protected
domain. Therefore, applying template protection schemes also requires an alignment-
free feature representation. (3) From Figure 1.3, we can also see that in the helper data
scheme, the real-valued features need to be quantized to a binary string. Therefore, a
fixed-length binary string that is alignment-free is required as an input of the helper
data scheme.
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Fig. 1.3: The structure diagram of the helper data scheme.

1.3.3 Selection of fingerprint features

In order to select fingerprint features, we first list the desired properties for finger-
print recognition systems and template protection schemes (based on the helper data
scheme) in Table 1.2 (columns “Shape”’and “Minutiae”). We compare the two main
fingerprint recognition techniques: the shape-based method, which uses image-based
features such as directional field and Gabor filter responses [4, 5], and the minutiae-
based method [9-11]. Their features are illustrated in Figure 1.4 respectively.

First, template protection based on the helper data scheme requires a fixed-length
feature vector as input. The shape method satisfies this requirement, while minu-
tiae features are with variable length and unordered. Next, when applying template
protection, the two fingerprints or two minutiae sets are compared in a protected
domain. Thus, a relative alignment between two fingerprints or minutiae sets are not
possible. Therefore, we need a translation and rotation invariant feature. For both
shape and minutiae features, the translation and rotation invariance can only be ob-
tained via pre-alignment or minutiae pair descriptor, which is not directly available.
Furthermore, in the helper data scheme, the real-valued feature vector need to be
quantized to a binary string. For both shape and minutiae features, a direct binary
representation is not available.

For all the biometric systems, recognition performance is a very important factor. A
high comparison speed is another important factor, and it is especially crucial for a
biometric identification system with a very large database. Minutiae-based methods
have a very good recognition performance (especially for good quality fingerprints),
however, its comparison speed is relatively slow. When designing a biometric system,
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Fig. 1.4: TIllustration of the fingerprint features. (a) Shape-based features; (b) Minutiae
(marked as red points).

Table 1.2: Desired Properties for Biometric Template Protection.

Methods Sh

Properties ape
Fixed-length feature vector . .
Recognition performance ® . .

Our target

M .
inutiae method

Translation rotation invariance

Binarization

Comparison speed

Market penetration




12 Chapter 1. Introduction

another important factor to take into account is the market penetration. Minutiae-
based techniques are most commonly used in fingerprint recognition systems and they
have high market penetration.

Based on our application characteristics, we choose minutiae features for our inves-
tigations for several reasons. (1) Minutiae are very discriminative features, and the
automatic minutiae extraction technique is relatively mature. (2) We target our appli-
cation in a high security scenario and we expect reasonable good quality fingerprints
in our applications. In this case, minutiae features can result in high recognition per-
formance. (3) Minutiae-based techniques are most commonly used. A large amount
of existing fingerprint recognition systems are based on the minutiae techniques. In
the algorithms that we will introduce in this thesis, we also use some features at the
global level (e.g., singular points) to enhance the recognition performance.

1.3.4 Refined research question

After discussing Aspects I-I11, we now further refine our research question to:

How can we combine a minutiae-based fingerprint recognition system with
template protection based on the helper data scheme?

In Table 1.2 (column “Our target method”), we have listed the goals of our target
method: we want to keep the high recognition performance and the market advan-
tage of the minutiae-based algorithms; in addition, we will transform a minutiae set
into a fixed-length feature vector (eventually, a fixed-length binary string), which is
translation and rotation invariant (thus, alignment-free). By achieving an alignment-
free fixed-length binary string from a minutiae set, we can also greatly improve the
comparison speed of minutiae-based methods.

Given the research question of this thesis, we specify five targets for achieving the
desired properties of our target fingerprint recognition system:

Target I: Fixed-length feature vector;

Target II: Translation and rotation invariance;
Target III: Binarization;

Target IV: High recognition performance;
Target V: High comparison speed.

It should be noted that for achieving Targets I, II and III, which are required by
template protection based on the helper data schemes, we are willing to sacrifice a
little bit recognition performance when we design our algorithms.

1.4 Overview of the Thesis

This thesis is based on published papers. The main chapters are Chapters 2-7. Chap-
ters 2-6 present the main contributions of this thesis and each of them consists of
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one or more papers in their original published format®. Chapter 7 is not based on
published papers, but it evaluates the techniques that have been presented in Chap-
ters 2-6 on the same fingerprint database, aiming to give a clear presentation of the
progress of the spectral minutiae representation scheme.

1.4.1 Chapters overview

The thesis is organized as follows:

In Chapter 2, the basic idea of the spectral minutiae representation is introduced.
The spectral minutiae representation is a novel method to represent a minutiae set as
a fixed-length feature vector, which is invariant to translation, and in which rotation
and scaling become translations that they can be easily compensated for. In this
chapter, we will introduce two spectral minutiae representations: the location-based
spectral minutiae representation (SML) and the orientation-based spectral minutiae
representation (SMO). SML encodes fingerprint minutiae location information, while
SMO encodes both minutiae location and orientation information.

Based on the spectral minutiae representations SML and SMO introduced in Chapter
2, we will propose several enhancements in Chapter 3. First, the spectral minutiae
matching algorithms are improved by applying the weighted sum correlation matching
and fast rotation shift searching. Second, we explore the method to enhance the
recognition performance by incorporating two types of minutiae quality information
in the spectral minutiae representations. Third, we use fingerprint minutiae subsets
to cope with the limited overlap problem between the reference and test fingerprints.

In Chapter 4, we will explore feature reduction methods to reduce the spectral minu-
tiae feature set. First, we introduce the Column Principle Component Analysis
(CPCA) feature reduction algorithm, which reduces the spectral minutiae feature
in the vertical direction. Next, the Line Discrete Fourier Transform (LDFT) feature
reduction algorithm is proposed to reduce the feature in the horizontal direction. The
CPCA and LDFT feature reduction algorithms can be applied independently or in
conjunction. Both methods are applied to the SML and SMO features.

In Chapter 5, we will present a new version of the spectral minutiae representations
called the Complex Spectral Minutiae Representation, denoted as SMC. Compared
with SMO, SMC improves the recognition performance significantly by incorporating
the minutiae orientation in a different way. In this chapter, the CPCA and LDFT
feature reduction algorithms that introduced in Chapter 4 are also applied to SMC.

In Chapter 6, we will propose two methods to quantize the real-valued spectral minu-
tiae features into binary strings: the Spectral Bits and the Phase Bits. In this chapter,
we also investigate the multi-sample fusion algorithms to improve the recognition per-
formance. Furthermore, we will propose different schemes to mask out unreliable bits.

50nly trivial corrections have been applied for the consistency of the whole thesis, which do not
influence the contents of the paper.
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Fig. 1.5: Block diagram of our designed system, focussing on the main contributions of this
thesis.

Since SMC outperformed SML and SMO, the binary representations will be investi-
gated for the SMC features.

In Chapter 7, we will give an evaluation of the techniques that have been presented
in Chapters 2-6, in order to have a clear comparison of each technique and to make
the progress of the spectral minutiae representation scheme explicit.

Finally, we will give conclusions and recommendations in Chapter 8.

1.4.2 Main contributions

In Figure 1.3, we show the diagram of our target biometric template protection sys-
tem, the helper data scheme. From the biometric aspect, the blocks “Feature Ex-
traction”and “Quantization”are our research topics. Based on the system operating
processes, we divide our research into three parts: 1. Spectral Minutiae Representa-
tions; II. Feature Reduction; ITI. Quantization. In Figure 1.5, we present the block
diagram of the contributions of this thesis in the context of a system diagram. In
addition, we list the main contributions of this thesis in association with the system
diagram and thesis chapters in Table 1.3.

1.4.3 Viewpoints of the thesis

In Section 1.3, we brought forward the research question of this thesis, and specified
five targets for our research on fingerprint recognition systems. In Table 1.4, we
associate each main chapter of this thesis with its achieved target(s). In this table,
we also list the related system blocks from each chapter.
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Table 1.3: Main Contributions of this thesis.

System Diagram Thesis Main Contributions
Part I. Spectral Minu- Chanter 2 Location-based Spectral Minutiae
tiae Representations p Representation (SML)
Orientation-based Spectral Minutiae
Representation (SMO)
Complex Spectral Minutiae Represen-
Chapter 5 tation (SMC)
Part II. Feature Reduc- Column Principle Component Analy-
tion Chapter 4 sis (CPCA)
Line Discrete Fourier Transform
(LDFT)
Part III. Quantization Chapter 6 Spectral Bits
Phase Bits

Table 1.4: Associated system blocks and targets of main chapters.

Thesis System Block(s) Target(s)
Chapter 2 | SML Target I: Fixed-length feature vector
SMO Target II: Translation and rotation invariance
Enhancements I Target IV: High recognition performance
Chapter 3 | Enhancements I Target IV: High recognition performance
Chapter 4 | Feature Reduction | Target V: High comparison speed
Chapter 5 | SMC Target I: Fixed-length feature vector
Target II: Translation and rotation invariance
Target IV: High recognition performance
Chapter 6 | Quantization Target III: Binarization;
Target V: High comparison speed
Enhancements I Target IV: High recognition performance
Enhancements II
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Fig. 1.6: Four viewpoints of this thesis and their relations.

Up to now, we have already looked at this thesis from four different viewpoints:
targets, system diagram, thesis structure and contributions:

e Targets: given the research question, we specified five targets to achieve the desired
properties of our fingerprint recognition system;

e System Diagram: our designed fingerprint recognition system, focussing on the
feature extraction and quantization parts;

e Thesis structure: the main chapters of this thesis;

e Contributions: our proposed algorithms to achieve our research goal.

We have already presented the relations of these four viewpoints via Figure 1.5 and
Tables 1.3, 1.4. The overview of these aspects and their relations are illustrated in
Figure 1.6. These four viewpoints can help the readers understand the thesis and our
research targets.



Chapter

Spectral Minutiae Representations of
Fingerprints

2.1 Chapter Introduction

PURPOSE. This chapter introduces the basic concept of the Spectral Minutiae Rep-
resentations. The spectral minutiae representation is a novel method to represent a
fingerprint minutiae set as a fixed-length feature vector, which is invariant to trans-
lation, and in which rotation and scaling become translations that can be easily com-
pensated for. These characteristics enable the combination of fingerprint recognition
systems with template protection schemes that require a fixed-length feature vector
and allow for faster matching as well.

CONTENTS. First, we introduce two spectral minutiae representations: the location-
based spectral minutiae representation (SML) and the orientation-based spectral minu-
tiae representation (SMO). SML encodes minutiae location information, while SMO
encodes both minutiae location and orientation information. Second, based on the
spectral minutiae features, two correlation-based matching algorithms for spectral
minutiae are presented: the direct matching and the Fourier-Mellin matching. Third,
we evaluate the algorithms on three fingerprint databases: FVC2000-DB2, FVC2002-
DB2 and MCYT. In addition, we proposed two methods to enhance the recognition
performance: score-level fusion on SML and SMO, denoted as SM Fusion, and in-
corporating the singular points, denoted as Enhancement by SP. Finally, we analyse
the spectral minutiae algorithms in three cases: (a) limited overlap between two fin-
gerprints; (b) missing and spurious minutiae; (¢) minutiae errors on location and
orientation. This chapter presents the basic concept of the spectral minutiae repre-
sentations and is constructed as the foundation of the following chapters in this thesis.
In the context of the system diagram, the content of this chapter is highlighted in
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Fig. 2.1: Block diagram of our designed system, highlighting the content of Chapter 2.

Figure 2.1. Later, a new version called the Complex Spectral Minutiae Representation,
denoted as SMC, was developed and will be presented in Chapter 5.

PUBLICATION(S). The content of Section 2.2 of this chapter has been published
in [34].

2.2 Fingerprint Verification Using Spectral Minu-
tiae Representations

Abstract

Most fingerprint recognition systems are based on the use of a minutiae set, which
is an unordered collection of minutiae locations and orientations suffering from var-
ious deformations such as translation, rotation and scaling. The spectral minutiae
representation introduced in this paper is a novel method to represent a minutiae
set as a fixed-length feature vector, which is invariant to translation, and in which
rotation and scaling become translations, so that they can be easily compensated
for. These characteristics enable the combination of fingerprint recognition systems
with template protection schemes that require a fixed-length feature vector. This
chapter introduces the concept of and algorithms for two representation methods:
the location-based spectral minutiae representation (SML) and the orientation-based
spectral minutiae representation (SMO). Both algorithms are evaluated using two
correlation-based spectral minutiae matching algorithms. We present the performance
of our algorithms on three fingerprint databases. We also show how the performance
can be improved by using a fusion scheme and singular points.
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2.2.1 Introduction

Among various biometric characteristics, such as face, signature and voice, fingerprint
has one of the highest levels of distinctiveness and performance [35] and it is the most
commonly used biometric modality. Compared with most other biometric techniques,
fingerprint recognition systems also have the advantages of both ease of use and low
cost. All these reasons explain the popularity of fingerprint recognition systems.

Minutiae are the endpoints and bifurcations of fingerprint ridges. They are known to
remain unchanged over an individual’s lifetime [35] and allow a very discriminative
classification of fingerprints. Each minutia can be described by parameters (z,y, ),
where (z,y) is the location of the minutia and 6 its orientation [36].

Nowadays, many fingerprint recognition systems are based on minutiae matching [7], [9].
However, minutiae-based fingerprint matching algorithms have some drawbacks that
limit their application. First, due to the fact that minutiae sets are unordered, the
correspondence between individual minutia in two minutiae sets is unknown before
matching and this makes it difficult to find the geometric transformation (consisting
of translation, rotation, scaling, and optionally non-linear deformations [9]) that op-
timally registers (or aligns) two sets. For fingerprint identification systems with very
large databases [21], in which a fast comparison algorithm is necessary, minutiae-based
matching algorithms will fail to meet the high performance speed requirements. Sec-
ondly, a minutiae representation of a fingerprint cannot be applied directly in recently
developed template protection schemes based on fuzzy commitment and helper data
schemes, such as [5] and [33], that require as an input a fixed-length feature vector
representation of a biometric modality?.

The spectral minutiae representation as proposed in this paper overcomes the above
drawbacks of the minutiae sets, thus broadening the application of minutiae-based
algorithms. Our method is inspired by the Fourier-Mellin transform, which allows
a representation of images in a way that is invariant to translation, rotation and
scaling [37-39]. By representing minutiae as a magnitude spectrum, we transform a
minutiae set into a fixed-length feature vector that at the same time does not need
registration to compensate for translation, rotation and scaling. Our algorithm does
not distinguish between endpoints and bifurcations, because the type of a minutia
can be easily confused due to acquisition noises or pressure differences during ac-
quisition. However, the orientation remains the same when this occurs. By using a
spectral minutiae representation instead of minutiae sets, we meet the requirements
of a template protection system and allow for faster matching as well.

The spectral minutiae representation method can be easily integrated into a minutiae-
based fingerprint recognition system. Minutiae sets can be directly transformed to
this new representation, which makes this method compatible with the large amount
of existing minutiae databases.

LOther template protection systems exist [32] that do not pose this fixed-length feature vector
requirement.
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This paper is organized as follows. First, the concept of spectral minutiae represen-
tation is explained in detail in Section 2.2.2. Next, in Section 2.2.3, two spectral
minutiae matching algorithms are proposed. Then, Section 2.2.4 and Section 2.2.5
present the experimental results and discussions. Finally, we draw conclusions in
Section 2.2.6.

2.2.2 Spectral Minutiae Representation

The spectral minutiae representation is based on the shift, scale and rotation proper-
ties of the two-dimensional continuous Fourier transform. If we have an input signal
(@), &= (x,y)T (we denote the transpose of a vector @ as ¥'), its continuous Fourier
transform is

FU@Y=F@) = [ 1) exp(-i")dz. 2.1)
ZeR
with @ = (wx,wy)T. The Fourier transform of a translated f(7) is

F{f(T — To)} = exp(—j@" Zo) F(&), (2.2)

with Zy = (z0,0)"T the translation vector. The Fourier transform of an isotropically
scaled f(Z) is

F{f(aZ)} = a *F(a™'d), (2.3)

with a (a > 0) the isotropic scaling factor. The Fourier transform of a rotated f (&) is

F{[(2T)} = F (D), (2.4)

with

o - < cos¢ —sing ) (2.5)

sing cos¢

Here ® is the (orthonormal) rotation matrix, and ¢ is the (anticlockwise) rotation
angle of f(Z).

It can be seen from (2.2) that if only the magnitude of the Fourier spectrum is retained,
this results in a translation invariant representation of the input signal. Furthermore,
from (2.3) and (2.4) it follows that scaling and rotation of the input signal results in
a scaled and rotated Fourier spectrum.
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In order to exploit the above properties of the two-dimensional Fourier transform, we
re-map the Fourier spectral magnitude onto a polar-logarithmic coordinate system,
such that the rotation and scaling become translations along the angular and radial
axes, respectively. The detailed steps are as follows. Consider a signal ¢(Z) that is a
translated, scaled and rotated replica of (&),

t(%) = r(a®Z — Tp), (2.6)

then the magnitude of the Fourier transforms of ¢(Z) and r(&) are related by,

T(@)] = a™?|R(a™" 2d), (2.7)

which is a translation invariant representation of the input signal. If we re-map the
Fourier spectral magnitude onto a polar-logarithmic coordinate system as,

A =log, /w2 + w2, B = angle(wy, wy), (2.8)

Rpi(A, B) = |R(e* cos 3, e sin )], (2.9)

Tyi(\, B) = [T(e* cos 3, ¢ sin B)], (2.10)

then we have the Fourier spectral magnitude of ¢(#) and r(Z) on the polar-logarithmic
coordinates,

T\ B) = a*QRpl(ﬁ + ¢, A —loga). (2.11)

Equation (2.11) is a translation invariant description of the input signal, while the
rotation and scaling have become translations along the new coordinate system axes.
If we would perform a second Fourier transform on Tp,i(A, 8), this is called a Fourier-
Mellin transform [40], [41]. By retaining the magnitude of this Fourier-Mellin spec-
trum, we can obtain a translation, rotation and scaling invariant representation of
the input signal.

We will introduce a similar procedure as shown in equations (2.7) to (2.11), which
can be applied to minutiae sets in order to find a representation that is invariant to
translation and where rotation and scaling are translations.

2.2.2.1 Location-based spectral minutiae representation (SML)

When implementing the Fourier transform there are two important issues that should
be considered. First, when a discrete Fourier transform is taken of an image, this
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results in a representation of a periodic repetition of the original image. This is
undesirable because it introduces errors due to discontinuities at the image bound-
aries. Second, the re-mapping onto a polar-logarithmic coordinate system after us-
ing a discrete Fourier transform introduces interpolation artifacts. Therefore, we
introduce an analytical representation of the input minutiae, and then use analyt-
ical expressions of a continuous Fourier transform that are evaluated on a grid in
the polar-logarithmic plane. These analytical expressions are obtained as follows.
Assume we have a fingerprint with Z minutiae. With every minutia, a function
m;(z,y) = 0(x — x4,y — yi),8 = 1,...,Z is associated where (x;,y;) represents the
location of the i-th minutia in the fingerprint image. Thus, in the spatial domain,
every minutia is represented by a Dirac pulse. The Fourier transform of m;(z,y) is
given by:

F{mi(z,y)} = exp(—j(wx; + wyyi)), (2.12)

and the location-based spectral minutiae representation is defined as

L(wx, wy) Z exp(—j(wxzi + wyy;)). (2.13)

In order to reduce the sensitivity to small variations in minutiae locations in the spatial
domain, we use a Gaussian low-pass filter to attenuate the higher frequencies. This
multiplication in the frequency domain corresponds to a convolution in the spatial
domain where every minutia is now represented by a Gaussian pulse. A 2D Gaussian
g(x,y) in the space domain and its Fourier transform G(wy,wy) are

2 2 w2 +w2
w) Z, G (wy, wy) = eXp(_ﬁ).
g

exp(— (2.14)

9(@.y) = 2mo? 202

Equation (2.14) shows that the parameter ¢ of the Gaussian in the space domain
appears as its reciprocal in the Gaussian in the frequency domain.

Following the shift property of the Fourier transform, the magnitude of M is taken
in order to make the spectrum invariant to translation of the input and we obtain

|ML(wwiy; U%)| =

w + wy
exp ( ) Zexp J(wxxi +wyyi))| - (2.15)

2—2

Equation (2.15) is the analytical expression for the spectrum, which can directly be
evaluated on a polar-logarithmic grid. The resulting representation in the polar-
logarithmic domain is invariant to translation, while rotation and scaling of the input
have become translations along the polar-logarithmic coordinates.
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2.2.2.2 Orientation-based spectral minutiae representation (SMO)

The location-based spectral minutiae representation (SML) only uses the minutiae
location information. However, including the minutiae orientation as well may give
better discrimination. Therefore, it can be beneficial to also include the orientation
information in our spectral representation. The orientation 6 of a minutia can be
incorporated by using the spatial derivative of m(z,y) in the direction of the minutia
orientation. Thus, to every minutia in a fingerprint, a function m;(x,y, 6) is assigned
being the derivative of m;(z,y) in the direction 6;, such that

F{mi(z,y,0)} = j(wx cosb; + wy sinb;) - exp(—j(wxx; + wyys)). (2.16)

As in the SML algorithm, using a Gaussian filter and taking the magnitude of the

spectrum yields
w,% + w§
exp | ——————
20
z

Zj(wx cos; + wy sinb;) - exp(—j(wxxi + wyyi))| -

i=1

|./\/lo(wx,wy;020)| =

(2.17)

2.2.2.3 Implementation

In the previous sections we introduced analytical expressions for the spectral minutiae
representations of a fingerprint. In order to obtain our final spectral representations,
the continuous spectra (2.15) and (2.17) are sampled on a polar-logarithmic grid. In
the radial direction A\, we use M = 128 samples between A\; = 0.1 and A\, = 0.6.
In the angular direction 3, we use N = 256 samples uniformly distributed between
0 =0 and B = w. Because of the symmetry of the Fourier transform for real-valued
functions, using the interval between 0 and 7 is sufficient. This polar-logarithmic
sampling process is illustrated in Figures 2.2 and 2.3.

The sampled spectra (2.15) and (2.17) will be denoted by S, (m, n;o1,) and So(m,n;00),
respectively, with m =1,...,M,n=1,..., N. When no confusion can arise, the pa-
rameter o and the subscripts L and O will be omitted.

Examples of the minutiae spectra achieved with SML are shown in Figure 2.4, and
those achieved with SMO are shown in Figure 2.5. In these figures, o1, = 0.32 (2.15)
and oo = 3.87 (2.17). For each spectrum, the horizontal axis represents the rotation
angle of the spectral magnitude (from 0 to 7); the vertical axis represents the fre-
quency of the spectral magnitude (the frequency increases from top to bottom). It
should be noted that the minutiae spectrum is periodic on the horizontal axis.
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Fig. 2.2: Illustration of the polar-logarithmic sampling (SML spectra). (a) the Fourier
spectrum in a Cartesian coordinate and a polar-logarithmic sampling grid; (b) the Fourier
spectrum sampled on a polar-logarithmic grid.

Fig. 2.3: Illustration of the polar-logarithmic sampling (SMO spectra). (a) the Fourier
spectrum in a Cartesian coordinate and a polar-logarithmic sampling grid; (b) the Fourier
spectrum sampled on a polar-logarithmic grid.
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N

«

(g) (h) Minutiae spectrum of (g)

Fig. 2.4: Examples of minutiae spectra using SML. (a) and (c) are fingerprints from the
same finger; (e) and (g) are fingerprints from the same finger.
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(g) (h) Minutiae spectrum of (g)

Fig. 2.5: Examples of minutiae spectra using SMO. (a) and (c) are fingerprints from the
same finger; (e) and (g) are fingerprints from the same finger.
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2.2.3 Spectral Minutiae Matching

After representing fingerprints by minutiae spectra, the next step is matching: the
comparison of two minutiae spectra. The result of matching is either a ‘match’ (the
two spectra appear to be from the same finger) or a ‘non-match’ (the two spectra
appear to be from different fingers). Normally, in this step, we will first compute a
number (similarity score), which corresponds to the degree of similarity. Then, by
using a threshold, we can make a match/non-match decision [42].

In this paper, two matching algorithms are presented. In the first algorithm (direct
matching), the correlation of two spectral images was chosen as a similarity score,
which is a common similarity measure in image processing. The second algorithm
is the Fourier-Mellin matching, in which the Fourier transform of the minutiae spec-
trum is taken, and only the magnitude is retained. This will generate a completely
translation, rotation and scaling invariant descriptor of the minutiae set, and then a
correlation-based method is used to calculate the similarity score of the Fourier-Mellin
spectra.

2.2.3.1 Direct Matching

Let R(m,n) and T'(m, n) be the two sampled minutiae spectra in the polar-logarithmic
domain respectively achieved from the reference fingerprint and test fingerprint. Both
R(m,n) and T'(m,n) are normalized to have zero mean and unit energy. We use
the two-dimensional correlation coefficient between R and T as a measure of their
similarity.

In practice, the input fingerprint images are rotated and might be scaled (for example,
depending on the sensor that is used to acquire an image). Since the minutiae spectra
are translation invariant, but not rotation and scaling invariant, this method has to
test a few different combinations of rotation and scaling, which are translations in
the minutiae spectra. To be specific, the scaling becomes the shift (or translation)
in the vertical direction, and the rotation becomes the circular shift in the horizontal
direction. We denote T'(m — i¢,n — j) as a shifted version of T'(m,n), with a shift of
1 in the vertical direction and a circular shift j in the horizontal direction. Then, the
correlation coefficient between R and T is defined as:

C B (G, 5) NZRmn m—i,n—j). (2.18)

m,n

In most fingerprint databases, there is no scaling difference between the fingerprints,
or the scaling can be compensated for on the level of the minutiae sets [43]. Therefore,
in practice only a few rotations need to be tested. We chose to test rotations from
-15 units to +15 units in steps of 3 units, which corresponds to a range from —10° to
410 ° in steps of 2°. The maximum score from the different combinations is the final
matching score between R and T,
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ST — max{CRT)(0, )1, (2.19)
J

with

j =3k for k=—5.5. (2.20)

2.2.3.2 Fourier-Mellin Matching

The Fourier-Mellin transform is often used to obtain a completely translation, rotation
and scaling invariant descriptor. It is based on the scale-invariance property of the
Mellin transform. The Mellin transform [44] is defined for complex s = o + jw as

M)} = Fuls /f )t~ Ldz. (2.21)

If we define the Mellin transform on the imaginary axis, thus s = jw, then the Mellin
transform becomes

= /00 f(z)z~1da. (2.22)
0

The Mellin transform of a scaled f(z) with a scaling factor a is

M f(ax)} = Ff(w / f(az)z~dx. (2.23)

If we make a change of variable y = ax, thus x = y/a, then (2.23) becomes

/ F)(Lye1 2 —dy
_ 7]&)/ f Jw ldy

= a JWF‘M
= eXp(—lena)FM( ). (2.24)

Equation (2.24) shows that the scale change in the time domain just becomes a phase
change in the Mellin domain. Therefore, the magnitude of the Mellin transform is
scale-invariant,
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[ (@)] = [Far(w)]- (2.25)

A standard Fourier-Mellin transform, sometimes called a circular Fourier and radial
Mellin transform [45], is written as

ML F (B} = Mi(s,w3) = /0 ’ /0 T B) exp(—jwsB)drdB. (2.26)

If we make a change of variable r = e*, thus A = Inr, and let s = —jwy, thus define
the radial Mellin transform on the imaginary axis, then the Fourier-Mellin transform
becomes

27 (o)
ML, B} = Mi(wy, wg) = / / £ B) exp(—jwa ) exp(—jwsB)drds. (2.27)

This is a 2D Fourier transform of the function f(\, #). Equation (2.27) shows that the
Fourier-Mellin transform can be implemented by a polar-logarithmic transform of the
original signal, and then using a 2D Fourier transform. Therefore, by performing a 2D
Fourier transform on the minutiae spectra, we implement a Fourier-Mellin transform,
and we can obtain a Fourier-Mellin descriptor by only retaining the magnitude. We
denote Rpni(m,n) and Trm(m, n) as the magnitude of the 2D Fourier transform of
the spectral minutiae spectra R(m,n) and T'(m,n). In the Fourier-Mellin matching
algorithm, the correlation of two Fourier-Mellin magnitude Rgni(m,n) and Tepm(m, n)
was chosen as a similarity score,

1
Siml) = VN > Ren(m, n)Ten(m, n). (2.28)

m,n

2.2.4 Experiments
2.2.4.1 Measurements

We test the spectral minutiae representation in a verification setting. A verification
system authenticates a person’s identity by comparing the captured biometric char-
acteristic with the corresponding biometric template(s) pre-stored in the system. It
conducts a one-to-one comparison to determine whether the identity claimed by the
individual is true [35].

The matching performance of a fingerprint verification system can be evaluated by
means of several measures. Commonly used are the false acceptance rate (FAR),
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(a) (b) (c) (d)

Fig. 2.6: Examples of fingerprint samples in MCYT: (a) and (b) are the fingerprints that we
accepted from MCYT;(c) and (d) are fingerprints that we rejected from MCYT because of
the low quality.

the false rejection rate (FRR), and the equal error rate (EER). When the decision
threshold of a biometric security system is set such that the FAR and FRR are equal,
the common value of FAR and FRR is referred to as the EER. In this paper, we use
FAR, EER and the genuine acceptance rate (GAR), GAR= 1-FRR, as performance
indicators of our scheme.

2.2.4.2 Experimental settings

The proposed algorithms have been evaluated on MCYT [46], FVC2000-DB2 [47]
and FVC2002-DB2 [48] fingerprint databases. The fingerprint data that we used
from MCYT are obtained from 10 individuals. Each individual contributed data
from 10 different fingers with 10 samples per finger. We also tested our algorithms on
two FVC fingerprint databases because they are public-domain fingerprint databases.
Compared with MCYT, the fingerprints in FVC have lower quality and bigger dis-
placements. For the FVC databases, we used the same experimental protocol as in
the FVC competition. Both FVC databases contain 100 fingers, with 8 samples per
finger. In FVC2002-DB2, we only used four samples (samples 1, 2, 7 and 8) in our
experiments?, while in FVC2000-DB2, we used all the 8 samples from each finger.
The characteristics of the databases are summarized in Table 2.1.

We generated two minutiae sets from MCYT. The first minutiae set contains manually
extracted minutiae, which serves as a high quality minutiae set. The second minutiae
set is obtained by the VeriFinger minutiae extractor [11] and will be called ‘VeriFinger
minutiae’. In order to be able to manually extract reliable minutiae from fingerprint
samples, we chose the 10 individuals from MCYT that have reasonably good quality
fingerprints. The quality measurement that we used here is based on fingerprint’s

2In FVC2002 databases, samples 3, 4, 5 and 6 were obtained by requesting the biometric data
subjects to provide fingerprints with exaggerated displacement and rotation [32]. In a security
scenario where the biometric data subject is aware that cooperation is crucial for security reasons,
he will be cooperative. Therefore, only samples 1, 2, 7 and 8 are chosen.
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Table 2.1: Characteristics of databases used in our experiments.

MCYT FVC2000-DB2 FVC2002-DB2
Sensor U.are.U TouchChip FX2000
(Digital Persona) | (ST Microelectronics) | (Biometrika)
Sensor type optical capacitive optical
Image size 256x400 256x364 296x560
Resolution 500 dpi 500 dpi 569 dpi

variance and coherence [49]. The variance and the coherence of a fingerprint reflect
the clarity of its ridge-valley structures. In general, good quality fingerprints have
higher variance and coherence than low quality fingerprints. Some samples that we
accepted and rejected from MCYT are shown in Figure 2.6. For FVC databases, we
only used the minutiae sets that are obtained by the VeriFinger minutiae extractor.

For each comparison, we chose two fingerprints from the data set: one as a reference
fingerprint, another as a test fingerprint. For matching genuine pairs, we used all the
possible combinations. For matching imposter pairs, we chose one sample from each
identity. Therefore, we have 4500, 2800 and 600 genuine scores for MCYT, FVC2000-
DB2 and FVC2002-DB2, respectively. For each database, we have 4950 imposter
scores.

In the spectral minutiae representation, we used a Gaussian low-pass filter on the
spectrum to attenuate the higher frequencies, see Equations (2.15) and (2.17). From
our experiments, we noticed that for SML and SMO, we need to choose different
Gaussian parameters (o1, and 0p) to achieve the best performances. Figure 2.7 and
2.8 show the influence of the Gaussian parameter o to the performances on MCYT
VeriFinger minutiae set (using direct matching algorithm). We noticed that the Gaus-
sian parameter has larger effects on SML than on SMO. Moreover, a Gaussian kernel
is needed for SMO for achieving a better performance, while for SML it is not. The
reason is that because the minutiae orientation is incorporated as a derivative of the
delta function (see Equation (2.16)), this will amplify the noise (both in minutiae
location and orientation) in the high frequency part in SMO. Therefore, a Gaussian
kernel is needed for SMO to attenuate the higher frequencies. In SML, the high fre-
quency part contains discriminative information, while the noise is evenly distributed
in all frequencies, therefore, a Gaussian kernel does not help for a better performance.
In our experiments, we finally chose 0 = 0 for SML (in this case, no multiplication
with Gaussian in the frequency domain) and o = 4.24 for SMO. In case the fingerprint
resolution is 500dpi, the Gaussian parameter o = 4.24(pixel) in the spacial domain is
about 0.21(mm) in reality.

From our experiments, we also noticed that the careful selection of frequency ranges
(A and \,) of spectral minutiae are essential for a high performance, especially for
SMO. For low quality fingerprints or an unreliable minutiae extractor (where the
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Fig. 2.7: Relation of the Gaussian ¢ (in the spacial domain) and SML performances (MCYT
VeriFinger minutiae set, using direct matching algorithm).
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Fig. 2.8: Relation of the Gaussian o (in the spacial domain) and SMO performances (MCYT
VeriFinger minutiae set, using direct matching algorithm).
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Table 2.2: Settings of the frequency range.

SML SMO
Databases
Al An Al An
MCYT (Manual minutiae) 0.1 | 06 | 0.05 | 0.6
MCYT (VeriFinger minutiae) 0.1 | 0.6 | 0.01 | 0.56
FVC2000-DB2 and FV(C2002-DB2 | 0.08 | 0.62 | 0.001 | 0.53

errors on minutiae location and orientation are higher), we need to use the lower
frequencies that are more robust to noise. The final settings of A\; and A, for the
databases are shown in Table 2.2.

2.2.4.3 Results of SML and SMO

We tested both SML and SMO representation methods. The EERs we achieved are
shown in Tables 2.3, 2.4 and 2.5, and the ROC (receiver operating characteristic)
curves are shown in Figures 2.9, 2.10 and 2.11. For MCYT VeriFinger minutiae sets,
the genuine and imposter distributions (resulting from direct matching) are shown in
Figure 2.12.

From Tables 2.3-2.5, we can see that the direct matching algorithm received better
results than the Fourier-Mellin matching algorithm. The Fourier-Mellin matching
algorithm first implemented a 2D Fourier transform, and then achieved a rotation
and scaling invariant descriptor by only retaining the magnitude. In this step, the
phase information was discarded. However, in our application, the spectral minutiae
do not suffer from the scaling problem, and the rotation range is also limited. From
the result we can see that by discarding phase to achieve this rotation and scaling
invariant degraded the performance. For direct matching algorithm, SML received
better results if the minutiae are with high quality (MCYT manual minutiae case).
When using automatically extracted minutiae sets (in which the minutiae suffer more
noise), SMO performed better.

From the results, we can also see that for both SMO and SML, the manually ex-
tracted minutiae received better results than the VeriFinger minutiae for MCYT.
Also, MCYT received much better results than the two FVC databases. These show
that our algorithms are sensitive to the minutiae quality and fingerprint quality. In
Section 2.2.5, we will present a further discussion about the factors that can influence
the performance of our algorithms.

2.2.4.4 Fusion results of SML and SMO

In Section 2.2.4.3 we showed the recognition results for both SML and SMO. To
illustrate the relation of the SML and SMO results, we made a scatter plot for the
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Table 2.3: MCYT: Direct matching results.

Minutiae sets EERs (SML) | EERs (SMO)
Manual minutiae 0.09% 0.12%
VeriFinger minutiae 0.47% 0.42%

Table 2.4: MCYT: Fourier-Mellin matching results.

Minutiae sets EERs (SML) | EERs (SMO)
Manual minutiae 3.16% 1.96%
VeriFinger minutiae 6.56% 3.29%

Genuine accept rate

Table 2.5: FVC: Direct matching results.

Databases EERs (SML) | EERs (SMO)
FVC2000-DB2 9.8% 8.4%
FV(C2002-DB2 6.4% 6.1%

False accept rate

1 L.
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- | = © = VeriFinger minutiae(SML)
0.965r VeriFinger minutiae(SMO)
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10" 10° 107 107" 10°

Fig. 2.9: ROC curves (MCYT: using direct matching).
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Fig. 2.10: ROC curves (MCYT: using Fourier-Mellin matching).
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Fig. 2.11: ROC curves (FVC2000-DB2 and FV(C2002-DB2: using direct matching).
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MCYT (VeriFinger minutiae sets)

700
Genuine distribution (SML)
6000 —+— Imposter distribution (SML)
= = = Genuine distribution (SMO)
----- Imposter distribution (SMO)
500
2
‘@
c
L 400
2
£ 300
Qo
<)
a
200
100
o4 iy, 5 . -
0 0.2 0.4 0.6 0.8 1

matching score

Fig. 2.12: Genuine and imposter distributions (VeriFinger minutiae sets, using direct match-
ing).

Scatter Plot of matching scores: MCYT (Manual minutiae sets)
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Fig. 2.13: Scatter plot of scores in MCYT manual minutiae case.
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Table 2.6: MCYT: Fusion results of SML and SMO (direct matching).

Minutiae sets EERs (SML) | EERs (SMO) | EERs (fusion)
Manual minutiae 0.09% 0.12% 0%
VeriFinger minutiae 0.47% 0.42% 0.22%

Table 2.7: MCYT: Fusion results of SML and SMO (Fourier-Mellin matching).

Minutiae sets EERs (SML) | EERs (SMO) | EERs (fusion)
Manual minutiae 3.16% 1.96% 1.0%
VeriFinger minutiae 6.56% 3.29% 1.86%

Table 2.8: FVC: Fusion results of SML and SMO (direct matching).

Databases EERs (SML) | EERs (SMO) | EERs (fusion)
FVC2000-DB2 9.8% 8.4% 6.2%
FVC2002-DB2 6.4% 6.1% 4.8%

genuine and imposter scores in the MCYT manual minutiae case (direct matching
results), shown in Figure 2.13.

From Figure 2.13, we can see that the genuine scores from SML and SMO are corre-
lated. At the same time, the imposter scores seem relatively uncorrelated. From the
picture it can also be seen that the genuine and imposter distribution can be better
separated using a fusion approach [50]. For this reason, we use the matching score
based fusion to improve the performance. A sum rule with equal weights for SML and
SMO is used [51], whose decision boundary is shown as the dashed line in Figure 2.13.
The fusion results are shown in Tables 2.6, 2.7 and 2.8 (for comparison, the results of
SML and SMO are also listed). The ROC curves are shown in Figures 2.14 and 2.15
(using the direct matching algorithm). We can see that the fusion results are much
better than the SML and SMO results.

For fingerprint identification systems with very large databases, the matching speed is
crucial. Because our algorithms use a fixed-length feature vector and avoid fingerprint
alignment, the matching speed is promising. For both SML and SMO using the
direction matching algorithm, we need to implement 360,448 real multiplications and
360,437 real additions. We tested the matching speed for the fusion case of SML
and SMO and we can implement 8,000 comparisons (or matchings) per second using
optimized C language programming on a PC with Intel Pentium D processor 2.80
GHz and 1 GB of RAM.
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Fig. 2.15: ROC curves (FVC: using direct matching).
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Table 2.9: The percentages of fingerprints without SPs.

Databases No core | No delta | No core and no delta
MCYT 4.8% 73% 3.6%
FVC2000-DB2 18% 81.5% 16.25%
FV(C2002-DB2 | 7.75% 66% 7.75%

2.2.4.5 Improvements by using singular points of fingerprints

In a fingerprint, singular points (SPs) can be identified. Henry [52] defined two types
of singular points, the core and the delta. One fingerprint contains 0-2 cores and
0-2 deltas. Some methods used SPs to pre-align the fingerprints [4,5]. However,
some fingerprints do not contain SPs. Therefore, using SPs for pre-alignment is not
reliable. In Table 2.9, we show the percentages of fingerprints in which SPs are not
detected by the VeriFinger minutiae extractor. There are three cases for the failure
of SPs detection: (1) the finger does not contain SPs; (2) SPs are not present in the
fingerprint image because of a big displacement; (3) the extractor fails to find the
SPs. If we only accept the fingerprints containing SPs, it will cause a high failure
to capture rate (FTCR). Therefore, we have designed an algorithm in which SPs can
assist the verification, while they will not cause FTCR.

In our algorithm, SPs are used to avoid the limited-overlap problems between the ref-
erence and test fingerprints. We use the direct matching algorithm for the experiment
and the matching score without SPs information is denoted as Spy. Taking SML as
example, the procedure is as follows.

(1) In a minutiae set, only take the minutiae within distance D from the SPs as a new
minutiae set to generate a subset spectral minutiae representation (Sub-SM). Thus,
depending on the number of SPs, each fingerprint can generate 0-4 different Sub-SMs.

(2) During matching, if both the reference and test fingerprints have the same type
of SPs (both having at least 1 core or 1 delta), 1-4 comparisons (the matching scores
are denoted as Ssp1_4) will be generated. For example, if the reference fingerprint
has 1 core, while the test fingerprint has 2, the Sub-SM from the reference fingerprint
will be compared with each of the Sub-SMs from the test fingerprint. If the reference
and test fingerprints have both 2 cores, 2 comparisons will be generated by comparing
the Sub-SMs from the upper-left core, and the Sub-SMs from the lower-right core,
respectively.

(3) The largest score among Spy and Sgpi—4 is chosen as the new matching score,
denoted as Ssp.

(4) A sum-rule fusion as presented in Section 2.2.4.4 for Spy and Ssp is used as the
final result for SML.

Finally, the steps (1)-(4) are also applied to SMO, and a sum-rule fusion as presented
in Section 2.2.4.4 for SML and SMO is used for a final result using SPs. We performed
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Table 2.10: Results using Singular Points (Direct Matching).

GAR
Databases EER T pAR — 1% | FAR = 01% | FAR = 0%
MCYT 0.13% |  99.9% 99.8% 99.5%
FVC2000-DB2 | 5.19% | 91.7% 88.1% 85.5%
FVC2002-DB2 | 3.86% |  95.5% 92.7% 89.7%
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Fig. 2.16: ROC curves using SPs.

the experiments on the three databases (using VeriFinger minutiae sets). Considering
the resolution and image size of fingerprints from each databases (see Table 2.1), we
chose the distance D = 120(pixel) for MCYT and FVC2000-DB2, and D = 130(pixel)
for FVC2002-DB2. The results are shown in Table 2.10 and the ROC curves of FVC
databases are shown in Figure 2.16 (for comparison, the ROC curves without SPs
improvement are also shown).

2.2.4.6 Comparison

We compared our results with other well-known minutiae matchers on the FVC2002-
DB2 database: VeriFinger® and Fuzzy Vault according to the protocol in [32]. The
results are shown in Table 2.11. We notice that the commercial minutiae matcher
VeriFinger received much better results than ours. One reason is that the VeriFinger

3VeriFinger Extractor Version 5.0.2.0 and VeriFinger Matcher version 5.0.2.1 are used.
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Table 2.11: Results comparison on FVC2002-DB2.

GAR
Methods EER
o FAR = 1% | FAR = 0.1% | FAR = 0%
Our method | 3.86% 95.5% 92.7% 89.7%
VeriFinger 1.0% 99% 98.8% 98.6%
Fuzzy Vault - - 91% 86%

matcher uses some fingerprint features that are not defined in ISO minutiae tem-
plate [43]. Another reason is that, with our global representation, we cannot perform
minutiae pair searching, which is a crucial step for minutiae-based matching. These
two reasons may cause the degradation of our algorithm compared with VeriFinger.

We also compared the performance of our method with a minutiae based fingerprint
recognition system combined with a template protection scheme based on fuzzy vault,
which is presented in [32]. The reason of this comparison is that in [32] an alignment
between a fingerprint pair using minutiae information is also not possible. Please
note that [32] includes a template protection scheme, whereas our system does not.
Moreover, because [32] implemented an alignment using high curvature points derived
from the fingerprint orientation field, this caused a 2% failure to capture rate (FTCR),
while our method does not suffer from this.

2.2.5 Discussion

The spectral minutiae representations are minutiae-based algorithms. A false rejec-
tion from a minutiae-based fingerprint recognition system can be caused by several
factors: (1) translation, rotation and scaling deformations of minutiae; (2) non-linear
distortions of minutiae; (3) limited overlap between the reference and test fingerprints;
(4) missing minutiae (the minutiae extractor fails to detect the existing minutiae) and
spurious minutiae (the minutiae extractor falsely identifies a minutia); (5) Errors on
minutiae location and orientation.

The spectral minutiae matching algorithms have been designed to cope with the minu-
tiae translation, rotation and scaling deformations, factor (1). Table 2.6 shows that
the manually extracted minutiae receive a better recognition accuracy than the auto-
matically extracted minutiae (VeriFinger minutiae sets). We assume that the manual
extraction is accurate to detect the true minutia and obtain its location and orien-
tation, then the performance degradation of the automatically extracted minutiae is
mainly caused by factors (4) and (5). However, the manual minutiae cannot avoid
errors related to limited overlap and non-linear distortions, factors (2) and (3). There-
fore, we will analyse our algorithms’ sensitivity to factors (3) to (5) in this section.
The non-linear distortions (factor (2)) can be included into minutiae errors (factor
(5)). To measure the influences of these three factors, we simulated them on the 1000
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Fig. 2.17: Creation of limited overlap between a fingerprint pair.

minutiae sets that we manually extracted from MCYT. We used the parameter setting
in Section 2.2.2.3 and the direct matching algorithm to perform the simulations.

2.2.5.1 Limited overlap between the reference and test fingerprints

During the verification phase, the finger may be placed at different locations and in
different angles on the sensor, which results in a limited overlap between the reference
and test fingerprints. In both the SML and SMO algorithms, all the extracted minu-
tiae are used in the fingerprint representation, therefore, a limited overlap between a
fingerprint pair will cause an insufficient percentage of matching minutiae, and will
lead to a reduced performance.

In order to study this effect, we performed simulations where minutiae in a certain
area were removed from the extracted minutia set. During the simulation, based on
the minutiae location, we removed a fraction of p minutiae at the top of a fingerprint
to obtain the reference minutia set. For the test minutiae set, we removed a frac-
tion of p minutiae from the same fingerprint at the bottom (see Figure 2.17). All
the corresponding minutiae are without any errors on both location and orientation.
After the minutiae removals, the corresponding minutiae fraction Peo,, between the
reference and test fingerprints is:

1-2
Pcorr = Tﬁ (229)

The matching results for different percentage p are shown in Figure 2.18.

From the results we can see that when the removal percentage is below 20% (in which
case the corresponding minutiae percentage Peoyy is above 75%), it will hardly cause
any error recognition in both the SML and SMO algorithms. When p increases, the
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Fig. 2.18: Simulation of limited overlap between the reference and test fingerprints.

performances of both algorithms degrade. Compared with SMO, SML is more robust
to the limited overlap between a fingerprint pair.

2.2.5.2 Missing and spurious minutiae

An unreliable minutiae extractor or bad quality fingerprints can bring a great number
of missing and spurious minutiae, which will lead to an insufficient number of corre-
sponding minutiae, and then lead to a reduced performance. During the simulation,
we first discarded a fraction of p randomly chosen minutiae from a minutiae set to
obtain a reference minutiae set. Next, we discarded another fraction of p minutiae
from the original minutiae set to obtain the test minutiae set. The matching results
for different p are shown in Figure 2.19.

Similar as the simulation results from the limited overlap case, missing and spurious
minutiae do not influence the equal error rates if the removed fraction is below 20%.
When p increases, the performances of both algorithms degrade. When p is relatively
small (below to 35%), SML performs better than SMO. When p is bigger, SML
degrades faster than SMO, which leads to a worse performance.

2.2.5.3 Errors on minutiae location and orientation

Many factors can cause errors on minutiae location and orientation, such as an unre-
liable minutiae extractor, noisy fingerprint images and elastic deformations of finger-
prints. The latter one is even unavoidable for manually extracted minutiae. During
the simulation, the original minutiae sets are used as reference minutiae sets. Then we
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Fig. 2.19: Simulation of missing and spurious minutiae.

add zero-mean Gaussian distributed noise to the minutiae location or/and orientation
to build test minutiae sets.

For the SML algorithm, we simulated the case of errors on the minutiae location.
For the SMO algorithm, we simulated three cases: (a) errors only on the minutiae
location; (b) errors only on the minutiae orientation; (¢) errors on both the minutiae
location and orientation.

Figure 2.20 shows the influence of minutiae location errors to SML and SMO (the
errors that we added are measured by pixels, for our fingerprints, 1 pixel is about
0.05mm distance in reality). We can see that if the location errors are relatively
small (the standard deviation ¢ is smaller than 3 pixels), this will not cause any
false recognition. When the errors increase, the performances of both SML and SMO
degrade. When o is smaller than 7, SML performances better than SMO. When
o is bigger than 7, SML degrades faster than SMO, and finally leads to a worse
performance.

Figure 2.21 shows the influence of different error cases to SMO. To simulate a similar
error scale on minutiae location and orientation, we scaled to orientation such that 1
pixel error on the location corresponds to 0.04 rad error on the orientation. Compared
with case (a) and (b), we can see that the errors on minutiae orientation cause much
less performance degradation than the errors on minutiae location. The case (a) and
(c) show that adding errors on orientation does not degrade the result greatly.

From Figure 2.20 and 2.21, we also notice that when the errors become bigger (for
example, o changes from 6 to 7), the equal error rates can degrade with 6%. That is
a big influence which cannot be ignored.
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Fig. 2.20: Simulation of errors on the minutiae location (SML and SMO).
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Fig. 2.21: Simulation of errors on the minutiae location and orientation (SMO).
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2.2.6 Conclusions

The spectral minutiae representation is a novel method to represent a minutiae set as
a fixed-length feature vector, which enables the combination of fingerprint recognition
systems and template protection schemes. In order to be able to apply the spectral
minutiae representation with a template protection scheme, for example based on a
fuzzy extractor [53], the next step would be to extract bits that are stable for the gen-
uine user and completely random for an arbitrary user. For example, we can apply 2D
Gabor filters for bit extraction, which has been used in iris codes [54]. Another pos-
sibility is to first apply additional dimensionality reduction by a combination of PCA
and LDA and then apply single bit extraction according to the reliable component
scheme or multi bit extraction [55].

The spectral minutiae representation avoids the difficulties of minutiae registration
by representing a minutiae set as a translation-invariant spectrum, in which rotation
and scaling become translations, which can be easily compensated for. Moreover, this
method is compatible with the large number of existing minutiae databases and the
additional cost to integrate this new scheme is relatively low.

This paper introduces two spectral minutiae representation methods: the location-
based spectral minutiae representation (SML) and the orientation-based spectral
minutiae representation (SMO). Both algorithms are evaluated using a correlation
based spectral minutiae matching algorithm (direct matching) and a Fourier-Mellin
matching algorithm. From the experiments, the direct matching algorithm gives a
better performance. Comparing SML and SMO, SML shows better results if the
fingerprints are of good quality and the minutiae extractor is reliable, while SMO
is more robust against the minutiae noise. After investigating the relation between
the SML and SMO results, a matching score based fusion is applied, which obtains
better results. Finally, a method using singular points showing a better performance
is presented.

In this paper, we also discussed three factors that can degrade our algorithms’ per-
formances: limited overlap between the reference and test fingerprints; missing and
spurious minutiae; errors on minutiae location and orientation. It shows that in
general SML is more robust to all these three factors. However, if the percentage
of missing and spurious minutiae is too high (p > 35%), or the errors on minutiae
location are too big (standard deviation o > 7 (pixel)), then SMO shows a better
performance. Therefore, in case the fingerprints have good quality and/or the minu-
tiae extractor is reliable, SML shows a better recognition performance. Overall, the
performance can be improved by implementing fusion of SML and SMO. However,
these three factors are unavoidable in a fingerprint recognition system. To cope with
the limited overlaps and to be more robust against the minutiae errors are topics of
further research.
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2.3 Chapter Conclusions

In this chapter, we introduced the basic idea of the spectral minutiae representation.
Two spectral minutiae representation methods have been proposed and analyzed:
the location-based spectral minutiae representation (SML) and the orientation-based
spectral minutiae representation (SMO). We also proposed two methods to enhance
the recognition performance of SML and SMO: one is the score-level fusion on SML
and SMO, denoted as SM Fusion; another is incorporating singular points, denoted
as Enhancement by SP.

The spectral minutiae representation method proposed in this chapter showed promis-
ing results, which motivate us to further investigate and optimize this method.

Table 2.12: The contributions of Chapter 2 and their achieved targets.

Contribution(s) Target(s)

SML Target I: Fixed-length feature vector

SMO Target II: Translation and rotation invariance
SM Fusion Target IV: High recognition performance
Enhancement by SP

With regard to the research question and the targets of this thesis that are formulated
in Section 1.3, this chapter addressed Target I, fixed-length feature vector, Target II,
translation and rotation invariance, and Target IV, high recognition performance.
With the spectral minutiae representation algorithm proposed in this chapter, Tar-
gets I and II have been achieved. The two enhancement methods “SM Fusion” and
“Enhancement by SP”contributed to Target IV. The contributions of this chapter
together with their achieved targets are summarized in Table 2.12.



48

Chapter 2. Spectral Minutiae Representations of Fingerprints




Chapter

Enhancements to Spectral Minutiae
Representations

3.1 Chapter Introduction

PURPOSE. In Chapter 2, we presented two spectral minutiae representations, SML
and SMO. The analysis in Section 2.2.5 shows that the performance of the spectral
minutiae algorithms can be degraded by the limited overlap between two fingerprints,
missing and spurious minutiae, and minutiae errors. To cope with the above problems,
we explore several methods to enhance the recognition performance of the spectral
minutiae representations.

CONTENTS. Based on the spectral minutiae representations SML and SMO intro-
duced in Chapter 2, we propose several enhancements. First, in Section 3.2, the
spectral minutiae matching algorithms are improved by applying the weighted sum
correlation matching and fast rotation shift searching. The algorithms are evaluated
on the MCYT database. In this section, the enhancements are only applied to the
SML features. Second, in Section 3.3, we explore the performance enhancement by in-
cluding two types of minutiae quality information in both the SML and SMO features.
We evaluated the performance on the FVC2002-DB2 database. Third, in Section 3.4,
we use fingerprint minutiae subsets to cope with the limited overlap problem be-
tween the reference and test fingerprints. The algorithm is evaluated on the MCYT
database. In the context of the system diagram, the content of this chapter and its
referred blocks are highlighted in Figure 3.1. The fast rotation shift searching algo-
rithm will be used in Chapters 4 and 5, and the minutiae quality data enhancement
will be applied to the complex spectral minutiae feature in Chapter 6.

PUBLICATION(S). Section 3.2 has been published in [56]. Section 3.3 has been
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Fig. 3.1: Block diagram of our designed system, highlighting the content of Chapter 8 and its
referred blocks.

published in [57]. Section 3.4 has been published in [58].

A NOTE TO READERS. The readers can focus on the following subsections: (1) 3.2.3
introduces the weighted sum correlation matching and the fast rotation shift search-
ing; (2) 3.3.3 introduces how to incorporate minutiae quality data to improve the
recognition performance; (3) 3.4.3 uses minutiae subsets to cope with the limited
overlap problem. Subsections 3.2.2, 3.3.2 and 3.4.2 give the background that have
already been introduced in Chapter 2. The readers can skip these parts.

3.2 Spectral Minutiae: A Fixed-length Representa-
tion of a Minutiae Set

Abstract

Minutiae, which are the endpoints and bifurcations of fingerprint ridges, allow a very
discriminative classification of fingerprints. However, a minutiae set is an unordered
set and the minutiae locations suffer from various deformations such as translation,
rotation and scaling. In this paper, we introduce a novel method to represent a minu-
tiae set as a fixed-length feature vector, which is invariant to translation, and in which
rotation and scaling become translations, so that they can be easily compensated for.
By applying the spectral minutiae representation, we can combine the fingerprint
recognition system with a template protection scheme, which requires a fixed-length
feature vector. This paper also presents two spectral minutiae matching algorithms
and shows experimental results.
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3.2.1 Introduction

A fingerprint consists of a pattern of line structures, which are called ridges. The
most prominent ridge characteristics are minutiae, which are the ridge endpoints and
bifurcations. They are known to remain unchanged over an individual’s lifetime [35].
Minutiae-based fingerprint recognition techniques are popular and widely used [7,9].
However, they have some drawbacks, which limit their application. First, due to the
fact that minutiae sets are unordered, the correspondence between individual minutia
in two minutiae sets is unknown before matching and this makes it difficult to find the
geometric transformation (consisting of translation, rotation, scaling, and optionally
non-linear deformations [9]) that optimally registers (or aligns) two sets. For finger-
print identification systems with very large databases [59], in which a fast comparison
algorithm is necessary, minutiae-based matching algorithms will fail to meet the high
speed requirements. Secondly, a minutiae representation of a fingerprint cannot be
applied directly in recently developed template protection schemes, such as [5] and
[26] (chapter 3), which require as an input a fixed-length feature vector representa-
tion of a biometric modality. The spectral minutiae representation as proposed in
this paper overcomes the above drawbacks of the minutiae sets, thus broadening the
application of minutiae-based algorithms.

There are several algorithms to extract a fixed-length feature vector from fingerprints.
The FingerCode as presented in [4] is based on ridge features. The author concluded
that FingerCodes are not as distinctive as minutiae and they can be used as com-
plementary information for fingerprint matching. Willis and Myers brought forward
a fixed-length minutiae wedge-ring feature [60], which recorded the minutiae num-
bers on a pattern of wedges and rings. However, this method can only perform a
coarse fingerprint authentication, and cannot handle big translations and rotations.
Recently, a feature vector based on the distribution of the pairwise distances between
minutiae is proposed by Park et al. [61]. However, this algorithm is only evaluated
on the manually labeled minutiae and the performance is not satisfying.

Our method is inspired by the Fourier-Mellin transform, which was first introduced
by the optical research community [37]. It was often used in image processing to
obtain a translation, rotation and scaling invariant descriptor of the image [39,45].
However, the implementation of the Fourier-Mellin transform requires a Fourier trans-
form and a polar-logarithmic mapping. When applying those on a digital image, a
resampling and interpolation process is normally unavoidable. To avoid the interpo-
lation errors, we introduce an analytical representation of the minutiae set, and then
use analytical expressions of a continuous Fourier transform that can be evaluated
on polar-logarithmic coordinates. By representing minutiae in the spectral domain,
we transform a minutiae set into a fixed-length feature vector, which at the same
time does not need registration to compensate for translation, rotation and scaling.
By using a spectral minutiae representation instead of minutiae sets, we meet the
requirements of template protection and allow for faster matching as well.

The spectral minutiae representation method can be easily integrated into a minutiae-
based fingerprint recognition system. Minutiae sets can be directly transformed to
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this new representation, which makes this method compatible with the large amount
of existing minutiae databases.

This paper is organized as follows. First, in Section 3.2.2, the concept of spectral
minutiae representation is explained in detail. Next, two correlation-based spectral
minutiae matching algorithms are proposed in Section 3.2.3. Then, Section 3.2.4 will
present the experimental results. Finally, we will draw conclusions in Section 3.2.5.

3.2.2 Spectral Minutiae Representation

3.2.2.1 Background

The spectral minutiae representation is based on the shift, scale and rotation proper-
ties of the two-dimensional continuous Fourier transform. If we have an input signal

(@), &= (x,y)T (we denote the transpose of a vector @ as ¥'1), its continuous Fourier
transform is

F{f(@)} = F(J) / / f(Z) exp(—jw' 7)dz, (3.1)
with @ = (wg,wy)T. The Fourier transform of a translated f(7) is

F{f (& — To)} = exp(—j@ " 7o) F (&), (3.2)

with Zy = (z0,%0)T the translation vector. The Fourier transform of an isotropically

scaled f(Z) is

F{f(ad)} = a2F(a~'a), (3.3)

with a (a > 0) the isotropic scaling factor. The Fourier transform of a rotated f (&) is

FLf (@)} = F(@0), (3.4)

with

sing cos¢

o - ( Cf)S(b —sing ) (3.5)

Here @ is the (orthonormal) rotation matrix and ¢ is the (anticlockwise) rotation
angle of f(Z).

It can be seen from (3.2) that if only the magnitude of the Fourier spectrum is retained,
this results in a translation invariant representation of the input signal. Furthermore,
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from (3.3) and (3.4) it follows that scaling and rotation of the input signal results in
a scaled and rotated Fourier spectrum.

Based on the above properties of the two-dimensional Fourier transform, we can re-
map the Fourier spectral magnitude onto a polar-logarithmic coordinate system with
respect to an origin, such that the rotation and scaling become translations along the
angular and radial axes, respectively. The detailed steps are as follows. Consider a
signal t(Z) that is translated, scaled and rotated replica of r(Z),

#(Z) = r(a®F — &), (3.6)

then the magnitude of the Fourier transforms of ¢(Z) and r(Z) are related by,

IT(&)| = a ?|R(a™ ' ®J)], (3.7)

which is a translation invariant representation of the input signal. If we re-map the
Fourier spectral magnitude onto a polar-logarithmic coordinate system as,

A =log, /w2 + w2, 8= arctan(%), (3.8)

X

Roi(\, B) = |R(e* cos B, e sin B)], (3.9)

Toi(\, B) = |T (e cos B, e* sin 3)], (3.10)

then we have the Fourier spectral magnitude of ¢(#) and r(Z) on the polar-logarithmic
coordinates,

To(M\, B) = a 2Rpi(B + ¢, A — loga). (3.11)

Equation (3.11) is a translation invariant description of the input signal, while the
rotation and scaling have become translations along the new coordinate system axes.
If we would perform a Fourier transform on Tp1(A, 3), this is called a Fourier-Mellin
transform.

We will introduce a similar procedure as we showed from equations (3.7) to (3.11) that
can be applied to minutiae sets in order to find a representation which is invariant to
translation and where rotation and scaling are translations.

3.2.2.2 An analytical spectral minutiae representation

When implementing the Fourier transform there are two important issues that should
be considered. First, when a discrete Fourier transform is taken of a continuous
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image, this results in a description of a periodic repetition of the original image. This
is undesirable because it introduces errors. Second, the re-mapping onto a polar-
logarithmic coordinate system after using a discrete Fourier transform introduces
interpolation artifacts. Therefore we introduce an analytical representation of the
input minutiae, and then use analytical expressions of a continuous Fourier transform
that are evaluated on every grid point in the polar-logarithmic plane. These analytical
expressions are obtained as follows. Assume we have a fingerprint with Z minutiae.
With every minutia, a function m;(z,y) = 0(x — z;,y —y:),i = 1,..., Z is associated
where (z;,y;) represents the location of the i-th minutia in the fingerprint image.
Thus, in the spatial domain, every minutia is represented by a Dirac pulse. The
Fourier transform of m;(z,y) is given by:

F{mi(z,y)} = exp(=j(wxri + wyyi)), (3.12)

and the spectral representation of the minutiae is defined as

Z
Mlesiy) = 3 expl(—ieeti + wy1i)) (313)

This is the analytical expression for the spectrum which can be directly evaluated
on a polar-logarithmic grid. The resulting representation in the polar-logarithmic
domain is invariant to translation, while rotation and scaling of the input have become
translations along the polar-logarithmic coordinates.

3.2.2.3 Implementation

In order to obtain our final spectral representation, the continuous spectrum (3.13)
is sampled on a polar-logarithmic grid. In the radial direction A\ we use M = 128
samples logarithmically distributed between A = 0.1 and A = 0.6. In the angular
direction 3, we use N = 256 samples uniformly distributed between § = 0 and § = .
Because of the symmetry of the Fourier transform for real-valued functions, using
the interval between 0 and = is sufficient. This polar-logarithmic sampling process is
illustrated in Figure 3.2.

The examples of the minutiae spectra are shown in Figure 3.3. For each spectrum,
the horizontal axis represents the rotation angle of the spectral magnitude (from 0 to
7); the vertical axis represents the frequency of the spectral magnitude (the frequency
increases from top to bottom). We can notice that the minutiae spectrum is periodic
on the horizontal axis.

3.2.3 Spectral Minutiae Matching

After representing fingerprints in the form of minutiae spectra, the next step is match-
ing: the comparison of two minutiae spectra. The result of matching is either a ‘match’
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Fig. 3.2: Illustration of the polar-logarithmic sampling. (a) the Fourier spectrum in a Carte-
sian coordinate and a polar-logarithmic sampling grid; (b) the Fourier spectrum sampled on
a polar-logarithmic grid.

(the two spectra appear to be from the same finger) or a ‘non-match’ (the two spectra
appear to be from different fingers). Normally, in this step, we will first compute a
number (similarity score) which corresponds to the degree of similarity. Then, by
using a threshold, we can make a match/non-match decision [42].

3.2.3.1 Direct matching

Let R(m,n) and T'(m, n) be the two sampled minutiae spectra in the polar-logarithmic
domain respectively achieved from the reference fingerprint and test fingerprint. Both
R(m,n) and T'(m,n) are normalized to have zero mean and unit energy. As a simi-
larity score, the correlation of two minutiae spectra was chosen, which is a common
similarity measure in image processing. Therefore, the matching score between R and
T is defined as:

1
St = VN > R(m,n)T(m,n). (3.14)

3
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Fig. 3.3: Examples of minutiae spectra. (a) and (c) are fingerprints from the same finger;
(e) and (g) are fingerprints from the same finger.
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3.2.3.2 Weighted sum correlation matching

Let R(m,n) and T'(m,n) be as defined in the previous subsection. The line correlation
CHT) (m) of R(m,n) and T(m,n) is defined as

CRT (m) = =" R(m,n)T(m,n), (3.15)

for m = 1...M, where M = 128, N = 256.

During matching, a weighted sum rule for the line correlation values is chosen as the
similarity score of R(m,n) and T'(m, n), which is defined as:

M
1
Swee' = 37 2 wm)c D m), (3.16)

m=1

with w(m) the sum rule weight for the correlation value C»T)(m). The weights
w(m) need to be obtained by training. It is chosen as:

)= pG(m) — pr(m)

v = e m)

; (3.17)

which is related to the detection index used in communication theory [62]. In (3.17),
p(m) and og(m) are the mean and the standard deviation of CU%T)(m) in case R
and T are from the same finger (a genuine pair), and py(m) and o7(m) are the mean
and the standard deviation of C%T)(m) in case R and T are from different fingers
(an imposter pair).

3.2.3.3 Fast rotation shift searching

In most fingerprint databases, there is no scaling difference between the fingerprints,
or the scaling can be compensated for on the level of the minutiae sets [43]. Therefore,
in practice only rotations have to be compensated for. This is done by testing a few
rotations. Because we applied the polar-logarithmic transform to the Fourier spectra,
the rotation becomes the circular shift in the horizontal direction in our minutiae
spectra. We chose to test rotation from —10° to +10°, which corresponds circular
shifts from -15 units to +15 units in the polar-logarithmic domain. This rotation
range is fingerprint data dependent. If big rotations appeared often in fingerprint
samples, then a larger rotation range should be applied. Let Tj(m,n) be defined as
T(m,n) with a circular shift k in the horizontal direction. For each shift trial, a new
similarity score S(%T+) is calculated using (3.14) or (3.16). Finally, the highest score
is chosen as the final matching score and the corresponding shift k is recorded as the
best shift (that is, the best rotation).
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We applied a fast search for the best shift. This algorithm consists of the following
steps:

(1) 5 circular shifts (k = —12,—-6,0,6, 12) are applied to T'(m,n) and the similarity
scores SUETr) are calculated. The maximum value of SU%Tk) is denoted as S; and its
corresponding shift &k is denoted as k1;

(2) 2 circular shifts (k = k1 — 2,k1 + 2) are applied to T'(m,n), and the similarity
scores SBTr) are calculated. The maximum value of S(B7k) and S; is denoted as
So, and its corresponding shift & is denoted as ko;

(3) 2 circular shifts (k = ko — 1,k2 + 1) are applied to T'(m,n), and the similarity
scores SULTk) are calculated. The maximum value of ST%) and S5 is denoted as
Sﬁnal-

Using this fast rotation shift search algorithm, only 9 shift trials need to be tested,
instead of 31 shift trials for an exhaustive search. After these steps, the value Sgpal
is recorded as the final matching score between R and T'. We tested both fast search
and exhaustive search methods, and gained similar results. But, theoretically, this
fast search solution is heuristic and may not give optimal results.

3.2.4 Results
3.2.4.1 Measurements

We test the spectral minutiae representation in a verification setting. A verification
system authenticates a person’s identity by comparing the captured biometric char-
acteristic with her own biometric template(s) pre-stored in the system. It conducts
a one-to-one comparison to determine whether the identity claimed by the individual
is true [35].

The matching performance of a fingerprint verification system is evaluated by means
of several measures. The most commonly used are the false acceptance rate (FAR), the
false rejection rate (FRR), and the equal error rate (EER). FAR is the probability that
the system gives a ‘match’ decision for fingerprints that are not from the same finger.
FRR is the probability that the system gives a ‘non-match’ decision for fingerprints
that are from the same finger. When the decision threshold of a biometric security
system is set so that the FAR and FRR are equal, the common value of FAR and
FRR is referred to as the EER. For simplicity, we use EER as a performance indicator
of our scheme.

The proposed algorithms have been evaluated by applying them to the MCYT Bio-
metric Database [46]. We used the fingerprint data containing 3600 fingerprints. They
were obtained from the first 30 individuals (person ID from 0000 to 0029 in MCYT).
Each individual contributed data from 10 different fingers, and from each finger, 12
samples were collected using the optical sensor U.are.U from Digital Persona [63], with
a resolution of 500dpi. The minutiae sets were obtained by the VeriFinger minutiae
extractor [11].
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Fig. 3.4: The weights for each line correlation.

Among our fingerprint dataset, we used 1200 fingerprint samples from 10 individuals
(person ID from 0020 to 0029 in MCYT) as a training set to calculate the weighted
sum correlation weights (3.17), and 2400 fingerprint samples from 20 individuals (per-
son ID from 0000 to 0019) as the test set.

For each comparison, we chose two fingerprints from the data set: one as a reference
fingerprint, another one as a test fingerprint. For matching verification (genuine

pairs), we used all the possible combinations, thus we have in total 10 x 10 X (122) =
6600 genuine scores in the training set, and 20 x 10 x (122) = 13200 genuine scores
in the test set. For non-matching verification (imposter pairs), we compared each
fingerprint with 10 randomly chosen samples from other individuals, thus we have in
total 1200 x 10 = 12000 imposter scores in the training set, and 2400 x 10 = 24000

imposter scores in the test set.

The weights (3.17) for the weighted sum correlation matching that we obtained from
the training set are shown in Figure 3.4. The EERs we achieved from the test dataset
are shown in Table 3.1. The genuine and imposter distributions are shown in Fig-
ure 3.5. The FAR, FRR and DET (Detection Error Trade-off) curves are shown in
Figure 3.6 and 3.7 respectively. In these figures, the matching scores are normalized
to the interval [0,1] for a better comparison.

From Table 3.1, we can see that the weighted sum correlation matching (WSC) re-
ceived a small improvement compared with the direct matching (DM). From Fig-
ure 3.5, the genuine score distributions for the two matching algorithms are almost
overlapping, while the imposter scores from WSC are slightly lower. However, based
on the very small difference in EERs, we cannot state that WSC is a better matching
algorithm.
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Probability density

Table 3.1: Matching results (the test dataset).

Matching method ‘ EER ‘

Direct matching (DM) 3.21%
Weighted sum correlation (WSC) | 3.13%
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Fig. 3.5: Genuine and imposter distributions (the test dataset).
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Fig. 3.6: FAR and FRR curves (the test dataset).
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Fig. 3.7: DET curves (the test dataset).

To evaluate our algorithm, we compared our results with the ones from other finger-
print recognition systems. From the academic domain, the MCYT organizer reports
an EER with 5.5% using minutiae-based algorithm [46]. From the commercial domain,
we tested the performance of VeriFinger from Neurotechnologija, whose algorithm
achieved one of the best results in both FVC2006 and FpVTE 2003 from NIST [11].
VeriFinger received a much better result with an EER 0.34%. In our method, to
combine with template protection schemes, we cannot perform an alignment between
the reference and test minutiae sets, which is a crucial step for minutiae-based match-
ing. This may cause the degradation of our algorithm. The comparison shows that
although our result is acceptable for academic research, we still need to improve our
algorithm to reach the security level of the current top fingerprint recognition systems.

3.2.5 Conclusion

The spectral minutiae representation is a new minutiae-based approach. Our method
represents an unordered minutiae set as a fixed-length feature vector, which enables
the combination of fingerprint recognition systems and template protection schemes.
Moreover, this method avoids the minutiae registration difficulties by representing a
minutiae set as a translation-invariant spectrum, in which the rotation and scaling
become translations, so that they can be easily compensated for. In this paper, we
also presented spectral minutiae matching algorithms and showed the experimental
results. However, severe fingerprint non-linear distortions, noisy and missing minutiae
can reduce the accuracy of our system. To make our method more robust to minutiae
errors is our future work.



62 Chapter 3. Enhancements to Spectral Minutiae Representations

3.3 Spectral Minutiae Representations of Finger-
prints Enhanced by Quality Data

Abstract

Many fingerprint recognition systems are based on minutiae matching. However, the
recognition accuracy of minutiae-based matching algorithms is highly dependent on
the fingerprint minutiae quality. Therefore, in this paper, we introduce a quality
integrated spectral minutiae algorithm, in which the minutiae quality information is
incorporated to enhance the performance of the spectral minutiae fingerprint recog-
nition system. In our algorithm, two types of quality data are used. The first one
is the minutiae reliability, expressing the probability that a given point is indeed a
minutia; the second one is the minutiae location accuracy, quantifying the error on
the minutiae location. We integrate these two types of quality information into the
spectral minutiae representation algorithm and achieve a decrease in the equal error
rate of over 20% in the experiment.

3.3.1 Introduction

Recognition of persons by means of biometric characteristics is gaining importance.
Among various biometric techniques, such as face, signature and voice, the fingerprint
has one of the highest levels of distinctiveness and performance [35] and it is the
most commonly used biometric modality. Many fingerprint recognition systems are
based on minutiae matching [7], [11]. Minutiae are the endpoints and bifurcations of
fingerprint ridges. They are known to remain unchanged over an individual’s lifetime
and allow a very discriminative classification of fingerprints. The spectral minutiae
representation [34] is a novel method to represent a minutiae set as a fixed-length
feature vector, which is invariant to translation, and in which rotation and scaling
become translations, so that they can be easily compensated for. These characteristics
enable the combination of fingerprint recognition systems with template protection
schemes' and allow for faster matching as well.

However, the recognition accuracy of minutiae-based matching algorithms is highly
dependent on the fingerprint minutiae quality. Reference [64] shows that minutiae-
based fingerprint recognition algorithms are less robust to the image quality degrada-
tion compared with image-based algorithms. Nowadays, investigating the influence
of the fingerprint quality on recognition performances also gains more and more at-
tention [65], [66].

The study presented in [34] shows that the spurious and missing minutiae or/and
minutiae location errors can degrade the performance of the spectral minutiae recog-
nition system. To cope with low quality fingerprints and to make the spectral minutiae

1Our method is designed to use in combination with template protection schemes that are based
on fuzzy commitment and helper data schemes, such as [5] and [33], that require as an input a fixed-
length feature vector representation of a biometric modality. Other template protection systems
exist [32] [29] that do not pose this fixed-length feature vector requirement.
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representation algorithm more robust against minutiae errors, we introduce quality
integrated spectral minutiae representations of fingerprints, in which the quality in-
formation of minutiae is incorporated in the fingerprint representation to enhance the
performance of the spectral minutiae fingerprint recognition system.

This paper is organized as follows. First, a review of the spectral minutiae repre-
sentation is presented in Section 3.3.2. Next, in Section 3.3.3, the quality integrated
spectral minutiae representations are introduced. Finally, Section 3.3.4 presents the
experimental results and we draw conclusions in Section 3.3.5.

3.3.2 Background

The spectral minutiae representation is based on the shift, scale and rotation proper-
ties of the two-dimensional continuous Fourier transform. In [34], the concept of two
representation methods are introduced: the location-based spectral minutiae represen-
tation (SML) and the orientation-based spectral minutiae representation (SMO).

3.3.2.1 Spectral Minutiae Representations

Assume we have a fingerprint with Z minutiae. In SML, with every minutia, a function
m;(z,y) = 0(x — x4,y — yi),8 = 1,...,Z is associated where (x;,y;) represents the
location of the i-th minutia in the fingerprint image. Thus, in the spatial domain,
every minutia is represented by a Dirac pulse. The Fourier transform of m;(z,y) is
given by:

F{mi(z,y)} = exp(=j(wxri + wyyi)), (3.18)

and the location-based spectral minutiae representation is defined as

L (wx, wy) Z exp(—j(wxzi + wyy;)). (3.19)

In order to reduce the sensitivity to small variations in minutiae locations in the spatial
domain, we use a Gaussian low-pass filter to attenuate the higher frequencies. This
multiplication in the frequency domain corresponds to a convolution in the spatial
domain where every minutia is now represented by a Gaussian pulse.

Following the shift property of the Fourier transform, the magnitude of M is taken
in order to make the spectrum invariant to translation of the input and we obtain

}ML(wx,wy;aﬁ)} =

w —|—w
eXP< 207 )ZeXp i + wyyi)| - (3.20)
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The location-based spectral minutiae representation (SML) only uses the minutiae
location information. However, including the minutiae orientation as well may give
better discrimination. Therefore, it can be beneficial to also include the orientation
information in our spectral representation. The orientation # of a minutia can be
incorporated by using the spatial derivative of m(z,y) in the direction of the minutia
orientation. Thus, to every minutia in a fingerprint, a function m;(x,y, 6) is assigned
being the derivative of m;(z,y) in the direction 6;, such that

F{mi(z,y,0)} = j(wx cosb; + wy sinb;) - exp(—j(wxz; + wyyi)). (3.21)

As with the SML algorithm, using a Gaussian filter and taking the magnitude of the

spectrum yields
wi + w§
exp | ————=—
204
z

Zj(wx cos; + wy sinb;) - exp(—j(wxzi + wyyi))| -

i=1

[ Mo (wx, wys 08)| =

(3.22)

In order to obtain the final spectral representations, the continuous spectra (3.20)
and (3.22) are sampled on a polar-logarithmic grid. In the radial direction A, we use
M = 128 samples between A} = 0.1 and Ay, = 0.6. In the angular direction 3, we
use N = 256 samples uniformly distributed between = 0 and 8 = 7. Because of
the symmetry of the Fourier transform for real-valued functions, using the interval
between 0 and w is sufficient. This polar-logarithmic sampling process is illustrated
in Figures 3.8 and 3.9. For each spectrum, the horizontal axis represents the rota-
tion angle of the spectral magnitude (from 0 to 7); the vertical axis represents the
frequency of the spectral magnitude (the frequency increases from top to bottom).
The resulting representation in the polar-logarithmic domain is invariant to trans-
lation, while rotation and scaling of the input have become translations along the
polar-logarithmic coordinates.

3.3.2.2 Spectral Minutiae Matching

Let R(m,n) and T(m,n) be the two sampled minutiae spectra respectively achieved
from the reference fingerprint and test fingerprint. Both R(m,n) and T(m,n) are
normalized to have zero mean and unit energy. We use the two-dimensional correlation
coefficient between R and T' as a measure of their similarity.

In practice, the input fingerprint images are rotated and might be scaled (for example,
depending on the sensor that is used to acquire an image). Assume that the scaling
has already been compensated for on the level of the minutiae sets [43]. Then we
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Fig. 3.8: Illustration of the polar-logarithmic sampling (SML spectra). (a) the Fourier
spectrum in a Cartesian coordinate and a polar-logarithmic sampling grid; (b) the Fourier
spectrum sampled on a polar-logarithmic grid.

Fig. 3.9: Illustration of the polar-logarithmic sampling (SMO spectra). (a) the Fourier
spectrum in a Cartesian coordinate and a polar-logarithmic sampling grid; (b) the Fourier
spectrum sampled on a polar-logarithmic grid.
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only need to test a few rotations, which become the circular shifts in the horizontal
direction. We denote T'(m,n — n.s) as a circular shifted version of T'(m,n). We use
the fast rotation shift searching algorithm that was presented in [56]? and choose the
maximum score of the different combinations as the final matching score between R
and T,

1
(RT) _
S = nﬁfxx{ UN mE nR(m, n)T(m,n —nes)},

—15 < nes < 15. (3.23)

3.3.3 Quality Integrated Spectral Minutiae Representations

In order to improve the performance of the spectral minutiae representation, we in-
corporate minutiae quality data in the calculation of the spectral minutiae. Minutiae
quality is described by two numbers. The first one is the minutiae reliability (QM),
expressing the probability that a given point is indeed a minutia. This measure
is recorded following the specification of the minutiae template standard ISO/IEC
19794-2 [43]: the quality figure ranges from 100 as a maximum to 1 as a minimum.
The other quality data we incorporated is the minutiae location accuracy (QL), quan-
tifying the error on the minutiae location. This measure is defined as the radius, in
pixels, of a circle from the found minutiae position, within which the minutiae position
is located. It is provided by a proprietary algorithm.

3.3.3.1 Using Quality of Minutiae Reliability (QM)

The quality of minutiae reliability (QM) gives the certainty that a given point is indeed
a minutia. We use it in the spectral minutiae representation by weighing the Dirac
pulse assigned to each minutia. For each minutia, the weight w depends linearly on
the minutiae reliability quality gy. A higher gy (which means a minutia with higher
reliability) corresponds to a higher weight w. Then, SML in (3.20) becomes

[ M (wx, wys0f)| =

w2 —|—w2 z
exp | - ———2 w; exp(—jlwxx; + wyyi))l , 3.24
p < 7 ; i exp(—j( Vi) (3.24)

and SMO in (3.22) becomes

2In [56], totaly 9 rotations are tested in a range of —10° to +10° in case of N = 256 samples
between 0 to m.
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w,% + wg
P\ 2
o

) ‘

[ Mo (wy, wyi 08)| =

Zj(wx cos§; + wy sinb;) - w; exp(—j(wxz; + wyys))| - (3.25)

=1

Equations (3.24) and (3.25) are the expressions of the minutiae reliability incorporated
SML and SMO.

3.3.3.2 Using Quality of Minutiae Location Accuracy (QL)

The quality of minutiae location accuracy (QL) quantifies the error on the minutiae
location. As we mentioned in Section 3.3.2, we use a Gaussian low-pass filter to
attenuate the higher frequencies in the minutiae spectrum in order to reduce the
sensitivity to the minutiae location errors in the spatial domain. Therefore, we use
this minutiae location quality measure to adjust the Gaussian parameters o1, and oo
in the spectral minutiae representations. For each minutia, the Gaussian parameter
o depends linearly on the minutiae location accuracy gr,. A higher ¢r, (which means
a minutia with lower location accuracy) corresponds to a higher o. Then, SML in
(3.20) becomes

Y w2 + w2
|ML(wxawy)| = Zexp <_ﬁ> 'eXp(—j(wai "‘Wyyi)) ’ (326)
i=1 Li
and SMO in (3.22) becomes
w +wy
Mo (wx, wy)] Zexp( . _2 )
j(wx cos0; + wy sinb;) - exp(—j(wxz; + wyy;))|- (3.27)

Equations (3.26) and (3.27) are the expressions of the minutiae location accuracy
incorporated SML and SMO.

3.3.3.3 Using both QM and QL

If we incorporate both QM and QL following the algorithms presented in 3.3.3.1 and
3.3.3.2, we obtain SML in (3.20) as
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Z w2 + w2
[ My (w,wy)| = > exp —% - w; exp(—j(wxTi + wyyi))| (3.28)
i=1 OLi
and SMO in (3.22) as
z 2 2
wi +w
Mo (wy, wy)| = _ Ty
Mofur)| = [Somm (-5
=1 7
j(wx cos0; + wy sin ;) - w; exp(—j(wxx; + wyy;))|- (3.29)

Equations (3.28) and (3.29) are the expressions of the quality integrated SML and
SMO.

3.3.4 Experiments

We test the quality integrated spectral minutiae representations (Equations (3.24) to
(3.29)) in a verification setting. The matching performance of a fingerprint verification
system can be evaluated by the false acceptance rate (FAR), the false rejection rate
(FRR), and the equal error rate (EER). When the decision threshold of a biometric
security system is set such that the FAR and FRR are equal, the common value of
FAR and FRR is referred to as the EER. In this paper, we use FAR, EER and the
genuine acceptance rate (GAR), GAR= 1-FRR, as performance indicators of our
scheme.

The proposed algorithms are evaluated on the FVC2002-DB2 [48] fingerprint database.
The minutiae sets including the minutiae quality data are extracted by a proprietary
method. The experiment is implemented following the experimental setting and test

protocol in [34]3. A correlation based matching algorithm is used and a score level
sum rule for SML and SMO is applied.

From our experiments, we noticed that for SML and SMO, we need to choose different
Gaussian parameters (o1, and 0o) to achieve the best performances. Figures 3.10 and
3.11 show the influence of the Gaussian parameter o to the performances of SML and
SMO*. We noticed that the Gaussian parameter has larger effects on SML than on
SMO. Moreover, a Gaussian kernel is needed for SMO for achieving a better perfor-
mance, while for SML it is not. The reason is that because the minutiae orientation is

3In [34], for each fingerprint, maximum two cores or/and two deltas were used to improve the
performance. In this paper, only the upper core is used as a reference point to enhance the recognition
accuracy.

4Figures 3.10 and 3.11 are acquired by the experiments on the MCYT fingerprint database in [34].
The influence of the Gaussian parameter o to the SML and SMO performances is similar for different
fingerprint databases.
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Fig. 3.10: Relationship of the Gaussian parameter o (in the spacial domain) and SML
performances (MCYT VeriFinger minutiae set in [34]).
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Fig. 3.11: Relationship of the Gaussian parameter o (in the spacial domain) and SMO
performances (MCYT VeriFinger minutiae set in [34]).
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Fig. 3.12: Relationship of the Gaussian parameter o and the minutiae location quality QL.

incorporated as a derivative of the delta function (see Equation (3.21)), this will am-
plify the noise (both in minutiae location and orientation) in the high frequency part
in SMO. Therefore, a Gaussian kernel is needed for SMO to attenuate the higher fre-
quencies. In SML, the high frequency part contains discriminative information, while
the noise is evenly distributed in all frequencies, therefore, a Gaussian kernel does not
help for a better performance. In our experiments, when no minutiae location quality
is incorporated, we chose o = 0 for SML (in this case, no multiplication with Gaussian
in the frequency domain) and o = 4.24 for SMO. In case the fingerprint resolution
is 569dpi (the FVC2002-DB2 database), the Gaussian parameter o = 4.24(pixel) in
the spacial domain is about 0.19(mm) in reality. When incorporating the minutiae
location accuracy (QL), we use the linear relationships shown in Figure 3.12 to adjust
the Gaussian parameter ¢ according to the minutiae location quality.

The final recognition performances are shown in Table 3.2 and the ROC curves are
shown in Figure 3.13. From the results, we can see that the recognition performance
of the spectral minutiae representation improves after incorporating the minutiae reli-
ability quality (QM). However, the improvement by using minutiae location accuracy
(QL) is very limited. This may result from the low reliability of the minutiae location
accuracy quality data. In Figure 3.14, we further illustrate the genuine and imposter
matching score densities of different cases. From the matching score densities, we
can notice that after incorporating the quality data, the imposter score densities are
almost keep the same, while the genuine scores are increased. This also explains the
enhancements in recognition accuracy after integrating the quality data into the spec-
tral minutiae representations. By incorporating both quality data (QM and QL), we
achieve a decrease of more than 20% in equal error rate in the experiment.
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Table 3.2: Results on the FVC2002-DB2 database.

GAR
Methods EER
FAR = 1% | FAR = 0.1% | FAR = 0%
No quality | 4.5% 94.2% 91.7% 88.8%
QM 3.7% 95.2% 93.5% 90.5%
QL 4.0% 94.3% 92.0% 89.0%
QM & QL | 3.5% 95.2% 93.2% 91.0%
Experiments on FVC2002-DB2
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Fig. 3.13: ROC curves on FVC2002-DB2 for different cases.
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Fig. 3.14: Matching score densities on FVC2002-DB2 for different cases.
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3.3.5 Conclusions

In fingerprint recognition systems, low quality fingerprints are unavoidable. To make
the spectral minutiae representation system more robust against minutiae errors, we
incorporate minutiae quality in the calculation of the spectral minutiae representation.
In this paper, we introduce two methods to incorporate minutiae reliability (QM)
and minutiae location accuracy (QL) respectively. The experiments show that the
performance of the spectral minutiae representation can be improved by using the
minutiae quality data. The QM incorporated spectral minutiae representation shows
better results than the QL incorporated spectral minutiae representation. By using
both quality data, we achieve overall the best result.

This paper presents the advantage of incorporating quality data in the spectral minu-
tiae representation system. The proposed methods only vary the minutiae represen-
tations, while keeping the matching algorithm unchanged, so that they can be easily
integrated in the spectral minutiae recognition system. Our future work will be the in-
teroperability study of using quality data and algorithm optimization of incorporating
the minutiae quality data to enhance the recognition performance.

3.4 Spectral Representations of Fingerprint Minu-
tiae Subsets

Abstract

The investigation of the privacy protection of biometric templates gains more and
more attention. The spectral minutiae representation is a novel method to represent
a minutiae set as a fixed-length feature vector, which is invariant to translation, and
in which rotation and scaling become translations, so that they can be easily com-
pensated for. These characteristics enable the combination of fingerprint recognition
systems with template protection schemes that require as an input a fixed-length
feature vector. However, the limited overlap of a fingerprint pair can reduce the
performance of the spectral minutiae representation algorithm. Therefore, in this
paper, we introduce the spectral representations of fingerprint minutiae subsets to
cope with the limited overlap problem. In the experiment, we improve the recogni-
tion performance from 0.32% to 0.12% in equal error rate after applying the spectral
representations of minutiae subsets algorithm.

3.4.1 Introduction

Biometrics technologies are developing rapidly in order to meet high security require-
ments. Among various biometric characteristics, such as face, signature and voice, the
fingerprint has higher levels of distinctiveness and performance [35] and it is the most
commonly used biometric modality. Many fingerprint recognition systems are based
on the use of a minutiae set [7], [11]. Minutiae are the endpoints and bifurcations of
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fingerprint ridges. They are known to remain unchanged over an individual’s lifetime
and allow a very discriminative classification of fingerprints.

In the recent years, the privacy protection of biometric templates has drawn more
and more attention of researchers [26], [27]. To enable the combination of finger-
print recognition systems with recently developed template protection schemes based
on fuzzy commitment and helper data schemes, such as [5] and [33], a fixed-length
feature vector representation of a biometric modality is required as an input®. The
spectral minutiae [34] represents a minutiae set as a fixed-length feature vector, which
is invariant to translation, and in which rotation and scaling become translations.
These characteristics enable the combination of fingerprint recognition systems with
template protection schemes and allow for faster matching as well.

However, in template protection systems where encrypted templates are stored, it is
not possible to align the reference and test fingerprints using minutiae information
in the spectral minutiae fingerprint recognition system. The study presented in [34]
shows that the recognition errors occur when the percentage of corresponding minutiae
is below 75 in an ideal situation (that is, no other errors present such as spurious and
missing minutiae, minutiae location errors). Therefore, the limited overlap between
a fingerprint pair can degrade the recognition performance of the spectral minutiae
fingerprint recognition system. Some fingerprint recognition algorithms use reference
points (such as core, delta) to pre-align fingerprints [5], [32]. However, these methods
have problems to cope with. First, some fingerprints do not have such reference
points. Second, the reference points may not appear in the fingerprint images during
acquisition. Third, the reference points detector may fail to locate the points.

Therefore, in this paper, we present a spectral representation of minutiae subset al-
gorithm to cope with the limited overlap problem, that does not rely on reference
points. In this method, we generate several subsets from one minutiae set and then
apply the spectral minutiae representation to the subsets. The corresponding minu-
tiae percentage between the minutiae subsets can increase. In this way, by applying
the spectral representations of minutiae subsets, our system is more robust against
the limited overlap problem.

This paper is organized as follows. First, a review of the spectral minutiae representa-
tion is presented in Section 3.4.2. Next, in Section 3.4.3, the spectral representations
of minutiae subsets algorithm is introduced. Finally, Section 3.4.4 presents the ex-
perimental results and we draw conclusions in Section 3.4.5.

3.4.2 Background

The spectral minutiae representation is based on the shift, scale and rotation prop-
erties of the two-dimensional continuous Fourier transform. In [34], the concept of
and algorithms for two representation methods are introduced: the location-based

50ther template protection systems exist [32] that do not pose this fixed-length feature vector
requirement.
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Fig. 3.15: Illustration of the polar-logarithmic sampling (SML spectra). (a) the Fourier
spectrum in a Cartesian coordinate and a polar-logarithmic sampling grid; (b) the Fourier
spectrum sampled on a polar-logarithmic grid.

spectral minutiae representation (SML) and the orientation-based spectral minutiae
representation (SMO).

3.4.2.1 Spectral Minutiae Representations

Assume we have a fingerprint with Z minutiae. In SML, with every minutia, a function
m;(z,y) = 0(x — x4,y — yi),8 = 1,...,Z is associated where (x;,y;) represents the
location of the i-th minutia in the fingerprint image. Thus, in the spatial domain,
every minutia is represented by a Dirac pulse. The Fourier transform of m;(x,y) is
given by:

F{mi(z,y)} = exp(—j(wxz; + wyyi)), (3.30)

and the location-based spectral minutiae representation is defined as

z
My (wy,wy) = Zexp(—j(wxxi + wyyi)). (3.31)

In order to reduce the sensitivity to small variations in minutiae locations in the spatial
domain, we use a Gaussian low-pass filter to attenuate the higher frequencies. This
multiplication in the frequency domain corresponds to a convolution in the spatial
domain where every minutia is now represented by a Gaussian pulse.
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Fig. 3.16: Illustration of the polar-logarithmic sampling (SMO spectra). (a) the Fourier
spectrum in a Cartesian coordinate and a polar-logarithmic sampling grid; (b) the Fourier
spectrum sampled on a polar-logarithmic grid.

Following the shift property of the Fourier transform, the magnitude of M is taken
in order to make the spectrum invariant to translation of the input and we obtain

‘ML(wwiy; U%)‘ =

w2 + w? z
exp [ — = Z exp(—jlwxz; + wyy;))| - (3.32)
i=1

)
207,

The location-based spectral minutiae representation (SML) only uses the minutiae
location information. However, including the minutiae orientation as well may give
better discrimination. Therefore, it can be beneficial to also include the orientation
information in our spectral representation. The orientation 6 of a minutia can be
incorporated by using the spatial derivative of m(x,y) in the direction of the minutia
orientation. Thus, to every minutia in a fingerprint, a function m;(x,y, 6) is assigned
being the derivative of m;(z,y) in the direction 6;, such that

F{mi(z,y,0)} = j(wx cosb; + wy sinb;) - exp(—j(wxx; + wyys))- (3.33)

As in the SML algorithm, using a Gaussian filter and taking the magnitude of the
spectrum yields
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In order to obtain the final spectral representations, the continuous spectra (3.32)
and (3.34) are sampled on a polar-logarithmic grid. In the radial direction )\, we use
M = 128 samples between A} = 0.1 and A, = 0.6. In the angular direction 8, we
use N = 256 samples uniformly distributed between 8 = 0 and § = 7. Because of
the symmetry of the Fourier transform for real-valued functions, using the interval
between 0 and 7 is sufficient. This polar-logarithmic sampling process is illustrated
in Figures 3.15 and 3.16. For each spectrum, the horizontal axis represents the ro-
tation angle of the spectral magnitude (from 0 to 7); the vertical axis represents the
frequency of the spectral magnitude (the frequency increases from top to bottom).
The resulting representation in the polar-logarithmic domain is invariant to trans-
lation, while rotation and scaling of the input have become translations along the
polar-logarithmic coordinates.

3.4.2.2 Spectral Minutiae Matching

Let R(m,n) and T'(m, n) be the two sampled minutiae spectra in the polar-logarithmic
domain respectively achieved from the reference fingerprint and test fingerprint. Both
R(m,n) and T'(m,n) are normalized to have zero mean and unit energy. We use
the two-dimensional correlation coefficient between R and T as a measure of their
similarity.

In practice, the input fingerprint images are rotated and might be scaled (for example,
depending on the sensor that is used to acquire an image). Since the minutiae spectra
are translation invariant, but not rotation and scaling invariant, this method has to
test a few different combinations of rotation and scaling, which are translations in
the minutiae spectra. To be specific, the scaling becomes the shift (or translation)
in the vertical direction, and the rotation becomes the circular shift in the horizontal
direction. We denote T'(m — i¢,n — j) as a shifted version of T'(m,n), with a shift of
1 in the vertical direction and a circular shift j in the horizontal direction. Then, the
correlation coefficient between R and T is defined as:

CED () NZR m,n)T(m—i,n—j). (3.35)

In most fingerprint databases, there is no scaling difference between the fingerprints, or
the scaling can be compensated for on the level of the minutiae sets [43]. Therefore, in
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practice only a few rotations need to be tested. We use the fast rotation shift searching
algorithm that was presented in [56] (which tests 9 rotation possibilities in a range
of —10° to +10°) and finally the maximum score from the different combinations is
the final matching score between R and T,

ST — max{CT)(0, 5)}, =15 < j < 15. (3.36)
J

3.4.3 Spectral Representations of Minutiae Subsets
3.4.3.1 Fingerprint Minutiae Subsets Generation

In this method, we generate several minutiae subsets from one minutiae set by select-
ing minutiae in a number of rectangular areas of the same size.

Assume we have a minutiae set My with Z minutiae, {(z;,v:)},¢ = 1,...,Z, with
(x4,y;) the location of the i-th minutia. Let Zmin, Tmax, Ymin, Ymax denote the bound-
aries of the minutiae locations and dy, dy the sides length of the fixed size rectangular
area. Then, we can generate four minutiae subsets My, My, My and My, at the
upper-left (ul), upper-right (ur), bottom-left (bl), bottom-right (br) part of the minu-
tiae set, as

My = {(z,y)|Zmin <2 < Tmin + dy, Ymin < Y < Ymin + dy },

My = {(2,9)|Zmax — dx < T < Tmax, Ymin < Y < Ymin + dy },
My = {(z,¥)|Zmin <2 < Zmin + dx, Ymax — Ay <Y < Ymax}s
My = {(2,9)|Tmax — dx < 2 < Trmax, Ymax — by < Y < Ymax}-

This procedure is illustrated in Figure 3.17.

3.4.3.2 Matching Procedure

During the enrollment, the spectral minutiae representations of the reference minutiae
set Miet,an and its subsets Myef ul, Mref,urs Mref,bl, Mret,br are stored as templates,
denoted as Ray1, Rul, Rur, Rbl, Rbr, respectively. During the verification, we use the
following procedure to verify the test fingerprint.

1. The spectral minutiae representations of the test minutiae set Micst,ann and its
subsets Miest,ul, Mrest,urs Mtest,bl, Miest,br are taken respectively, denoted as Th, T,
Tur, Th1 and T,

2. Calculate the matching score Say between R,y and Thy following Equation (3.36),
Sall = §(Ran,Tan) |
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upper-left

g .- : :
bottom-left minutiae set bottom-right
Fig. 3.17: Illustration of one minutiae set and its four subsets.

3. Calculate 16 matching scores between minutiae subsets and take the largest score
as the spectral minutiae subsets score Sg,p, that is,

SSUb = IE%),({S(R’T”R € {Rul’ Rur’ Rbl’ Rbr}a
T € {Tw, Tur, Tor, Tin } }- (3.37)

4. Implement a score level sum-rule fusion of Say and Sgup.

5. The steps 1-4 are applied to SML and SMO respectively, and finally, a score level
sum-rule fusion of the SML and SMO results is applied to achieve the final matching
score.

3.4.4 Experiments

We test the spectral representations of fingerprint minutiae subsets in a verification
setting. The matching performance of a fingerprint verification system can be eval-
uated by the false acceptance rate (FAR), the false rejection rate (FRR), and the
equal error rate (EER). When the decision threshold of a biometric security system
is set such that the FAR and FRR are equal, the common value of FAR and FRR is
referred to as the EER. In this paper, we use FAR, EER and the genuine acceptance
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Table 3.3: Experimental settings.

oL, 0
SML | A 0.1
Ah 0.6
lofe) 4.24
SMO | A 0.01
Ah 0.56
dy 120 (pixel)
dy 180 (pixel)

Table 3.4: Results on the MCYT database.

GAR
Methods EER
FAR = 0.1% | FAR = 0%
No Minutiae Subsets | 0.32% 99.5% 99.1%
Minutiae Subsets 0.12% 99.9% 99.7%

rate (GAR), GAR= 1-FRR, as performance indicators of our scheme.

The proposed algorithms have been evaluated on the MCY'T [46] fingerprint database.
The fingerprint data that we used from MCYT are obtained from 100 individuals (per-
son ID from 0000 to 0099 in MCYT, and finger ID for each individual is 0) and each
individual contributed 12 samples. The minutiae sets were obtained by the VeriFin-
ger minutiae extractor [11]%. During the test, for each comparison, we chose two
fingerprints from the data set: one as a reference fingerprint, another one as a test
fingerprint. For matching genuine pairs, we used all the possible combinations. For
matching imposter pairs, we chose the first sample from each identity. In total, we
implement 6600 genuine comparisons and 4950 imposter comparisons. The experi-
mental settings are shown in Table 3.3. The final results are shown in Table 3.4 and
the ROC curves are shown in Figure 3.18. For comparison, the result of the spectral
minutiae representation without using minutiae subsets is also shown.

From the results, we can see that the recognition performance of the spectral minutiae
representation improves after applying the spectral representations of the minutiae
subsets. This shows that by generating the minutiae subsets, the corresponding minu-
tiae percentage between the minutiae subsets increase compared with the one between
the total minutiae sets, and this results in an improved recognition accuracy. By ap-
plying the spectral representations of minutiae subsets, our system is more robust
against the limited overlap problem.

6VeriFinger Extractor Version 5.0.2.0 is used.
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Fig. 3.18: ROC curves.

3.4.5 Conclusions

In fingerprint recognition systems, a limited overlap between the reference and test
fingerprints is unavoidable. To make the spectral minutiae representation system more
robust against the limited overlap problem, we introduce the algorithm of the spectral
representations of fingerprint minutiae subsets. The experimental result shows a
promising enhancement in recognition accuracy.

The algorithm we present in this paper does not rely on reference points. Therefore,
this algorithm does not suffer from the problems that can be caused by reference
points, such as the failure of reference points detection. Moreover, this method can be
easily integrated to the large number of existing minutiae databases without requiring
additional fingerprint image based information.

3.5 Chapter Conclusions

In this chapter, we proposed several enhancement methods to improve the perfor-
mance of the spectral minutiae representations SML and SMO.

In Section 3.2, we first proposed the weighted sum correlation matching and fast
rotation shift searching to improve the spectral minutiae matching algorithms. The
fast rotation shift searching algorithm is especially effective in dealing with large
rotations between the reference and test fingerprints. This method will be used in
Chapters 4 and 5.
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Next, in Section 3.3, we explored a method to enhance the recognition performance
by incorporating minutiae quality information in both the SML and SMO features,
denoted by Enhancement by Quality. This method makes the spectral minutiae rep-
resentation system more robust against minutiae errors and low quality fingerprints.
The experiments showed a promising improvement in recognition performance. Since
minutiae quality is also defined in the Finger Minutiae Data ISO/IEC 19794-2 Stan-
dard [43] and many minutiae extractors will provide this minutiae quality information,
it is very easy to apply this enhancement method to the spectral minutiae represen-
tation. In Chapter 6, this method will be applied to another version of the spec-
tral minutiae representations, called the Complex Spectral Minutiae Representation
(SMC).

Finally, we use fingerprint minutiae subsets to cope with the limited overlap problem
between the reference and test fingerprints in Section 3.4, denoted as Minutiae Subsets.
This method is important for applications where only partial fingerprints are available,
e.g., forensic applications.

Table 3.5: The contributions of Chapter 3 and their achieved targets.

Contribution(s) Target(s)

Enhancement by Quality | Target IV: High recognition performance

Minutiae Subsets

With regard to the research question and the targets of this thesis that are formu-
lated in Section 1.3, this chapter addressed Target IV, high recognition performance.
Considering the effectiveness and feasibility of all the proposed methods in this chap-
ter, we will recommend to apply the enhancement by incorporating minutiae quality
information. The contributions of this chapter together with their achieved targets
are summarized in Table 3.5.
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Chapter

Feature Set Reduction for Spectral
Minutiae Representations

4.1 Chapter Introduction

PURPOSE. The spectral minutiae algorithm introduced in Chapter 2 received promis-
ing results. The spectral minutiae feature is a 32,768-dimensional real-valued feature
vector. Due to this large dimensionality, the template storage requirement is high and
the matching speed is limited. Furthermore, the high dimensionality can also lead to
a small sample size problem, which is the result of overfitting on a limited amount
of training data. Therefore, in this chapter, we will explore methods that reduce the
spectral minutiae feature dimensionality.

CONTENTS. We explore two feature reduction methods. First, the Column Principle
Component Analysis (CPCA) reduces the spectral minutiae feature in the vertical
direction. Second, the Line Discrete Fourier Transform (LDFT) reduces the feature
in the horizontal direction. The CPCA and LDFT feature reduction algorithms can
be applied independently or in conjunction. Finally, both methods are applied to
the SML and SMO features and are evaluated on the FVC2002-DB2 and MCYT
databases. In the context of the system diagram, the content of this chapter and its
referred blocks are highlighted in Figure 4.1. The CPCA and LDFT feature reduction
methods will also be applied to the complex spectral minutiae feature that will be
presented in Chapter 5. Based on the features after the CPCA and LDFT feature
reductions, we will introduce two binary representation schemes in Chapter 6.

PUBLICATION(S). The content of Section 4.2 of this chapter has been published
in [67]. Note: several small errors in equations in Section 4.2.4.2 are corrected in this
book.
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Fig. 4.1: Block diagram of our designed system, highlighting the content of Chapter 4 and its
referred blocks.

A NOTE TO READERS. The readers can focus on the following subsections: the
CPCA and LDFT algorithms are introduced in 4.2.3 and 4.2.4 respectively and their
performances are shown in 4.2.5. Subsection 4.2.2 gives the background that have
already been introduced in Chapter 2. The readers can skip this part.

4.2 A Fast Minutiae-based Fingerprint Recognition
System

Abstract

Based on the spectral minutiae features, this chapter introduces two feature reduc-
tion algorithms: the Column-PCA and the Line-DFT feature reductions, which can
efficiently compress the template size with a reduction rate of 94%. With reduced
features, we can also achieve a fast minutiae-based matching algorithm. This chapter
presents the performance of the spectral minutiae fingerprint recognition system and
shows a matching speed with 125,000 comparisons per second on a PC with Intel
Pentium D processor 2.80 GHz and 1 GB of RAM. This fast operation renders our
system suitable as a pre-selector for a large-scale fingerprint identification system,
thus significantly reducing the time to perform matching, especially in systems oper-
ating at geographical level (e.g., police patrolling) or in complex critical environments
(e.g., airports).
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4.2.1 Introduction

Fingerprint recognition systems have the advantages of both ease of use and low cost.
The Unisys Security Index released in December 2008 reveals that fingerprint is the
most acceptable biometric technology [3]. Most fingerprint recognition systems are
based on the use of a minutiae set. Minutiae are the endpoints and bifurcations of
fingerprint ridges. They are known to remain unchanged over an individual’s lifetime
and allow a very discriminative classification of fingerprints [35].

The spectral minutiae representation presented in [34] is a method to represent a
minutiae set as a fixed-length feature vector, which is invariant to translation, and
in which rotation and scaling become translations, so that they can be easily com-
pensated for. These characteristics enable the combination of fingerprint recognition
systems with recently developed template protection schemes based on fuzzy com-
mitment and helper data schemes, such as [5] and [33], that require as an input a
fixed-length feature vector representation of a biometric modality®.

The spectral minutiae algorithm in [34] received promising results. The spectral
minutiae feature is a 32,768-dimensional real-valued feature vector. The large di-
mensionality of the spectral minutiae feature can cause three problems. First, the
storage requirement for a spectral minutiae fingerprint system is very high. Second,
the high dimensionality leads to a computational burden and the matching speed will
be limited, which is not desired for fingerprint identification systems with very large
databases. Third, the high dimensionality can lead to a small sample size problem [68].

In this chapter, we will introduce two feature reduction methods in order to solve
the above problems of the original spectral minutiae algorithm: the Column Prin-
cipal Component Analysis (Column-PCA) and the Line Discrete Fourier Transform
(Line-DFT) feature reduction algorithms. By applying Column-PCA and Line-DFT
methods to the original spectral minutiae features, we can effectively compress the
spectral minutiae templates and increase the matching speed as well.

For a large Automated Fingerprint Identification System (AFIS), the recognition ac-
curacy, matching speed and its robustness to poor image quality are normally re-
garded as the most critical elements of system performance. Due to the fact that
minutiae sets are unordered, the correspondence between individual minutia in two
minutiae sets is unknown before matching. This makes it difficult to find the geometric
transformation that optimally registers (or aligns) two minutiae sets. For fingerprint
identification systems with very large databases [21], in which a fast comparison al-
gorithm is necessary, most minutiae-based matching algorithms will fail to meet the
high speed requirements. Compared with other AFIS vendors, our spectral minutiae
fingerprint recognition system has the speed advantage: the experiment shows that
our matching speed is more than 15 times faster than that of another commercial
minutiae-based fingerprint matching algorithm (we will present the details later). To
satisfy the high speed requirement, some AFIS vendors first use the global fingerprint

LOther template protection systems exist [32] that do not pose this fixed-length feature vector
requirement.
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characteristics (image-based features) as the first stage matching, and then use the
minutiae matcher as the second stage matching [35]. However, this requires the orig-
inal fingerprint images and such solutions cannot be integrated into the large amount
of existing minutiae-based fingerprint recognition systems, in which only minutiae
sets are stored as templates. The spectral minutiae representation we present in this
paper only needs the minutiae templates as input, so that it can be easily integrated
into any arbitrary minutiae-based fingerprint recognition system. This motivates us
to consider our spectral minutiae algorithm as a pre-selector (or pre-filter) for a large-
scale AFIS to improve the overall matching speed performance, especially in systems
operating at geographical level (e.g., police patrolling) or in complex critical envi-
ronments (e.g., airports). Besides the speed advantage, our algorithm can also be
combined with template protection schemes, which gains more and more attention
due to the substantial privacy concerns.

This paper is organized as follows. First, the background of the spectral minutiae
representation is presented in Section 4.2.2. Next, in Section 4.2.3 and Section 4.2.4,
we introduce the Column-PCA and Line-DFT feature reduction algorithms. Then,
Section 4.2.5 presents the experimental results. Finally, we draw conclusions in Sec-
tion 4.2.6.

4.2.2 Spectral Minutiae Representation

The spectral minutiae representation is based on the shift, scale and rotation proper-
ties of the two-dimensional continuous Fourier transform. In [34], the concept of two
representation methods are introduced: the location-based spectral minutiae represen-
tation (SML) and the orientation-based spectral minutiae representation (SMO).

4.2.2.1 Location-based spectral minutiae representation (SML)

When implementing the Fourier transform there are two important issues that should
be considered. First, when a discrete Fourier transform is taken of an image, this
results in a representation of a periodic repetition of the original image. This is
undesirable because it introduces errors due to discontinuities at the image bound-
aries. Second, the re-mapping onto a polar-logarithmic coordinate system after us-
ing a discrete Fourier transform introduces interpolation artifacts. Therefore, we
introduce an analytical representation of the input minutiae, and then use analyt-
ical expressions of a continuous Fourier transform that are evaluated on a grid in
the polar-logarithmic plane. These analytical expressions are obtained as follows.
Assume we have a fingerprint with Z minutiae. With every minutia, a function
m;(z,y) = 0(x — x4,y — vi),8 = 1,...,Z is associated where (x;,y;) represents the
location of the i-th minutia in the fingerprint image. Thus, in the spatial domain,
every minutia is represented by a Dirac pulse. The Fourier transform of m;(z,y) is
given by:
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FA{mi(z,y)} = exp(—j(wxri + wyyi)), (4.1)

and the location-based spectral minutiae representation is defined as

z
My (wy,wy) = Zexp(—j(wxari + wyyi)). (4.2)

In order to reduce the sensitivity to small variations in minutiae locations in the spatial
domain, we use a Gaussian low-pass filter to attenuate the higher frequencies. This
multiplication in the frequency domain corresponds to a convolution in the spatial
domain where every minutia is now represented by a Gaussian pulse.

Following the shift property of the Fourier transform, the magnitude of M is taken
in order to make the spectrum invariant to translation of the input and we obtain

[Mu(wwyiof)| =

w2 4+ w? z
exp <—¥> Zexp(—j(wxari + wyyi))| - (4.3)

Equation (4.3) is the analytical expression for the spectrum which can directly be
evaluated on a polar-logarithmic grid. The resulting representation in the polar-
logarithmic domain is invariant to translation, while rotation and scaling of the input
have become translations along the polar-logarithmic coordinates.

4.2.2.2 Orientation-based spectral minutiae representation (SMO)

The location-based spectral minutiae representation (SML) only uses the minutiae
location information. However, including the minutiae orientation as well may give
better discrimination. Therefore, it can be beneficial to also include the orientation
information in our spectral representation. The orientation 6 of a minutia can be
incorporated by using the spatial derivative of m(z,y) in the direction of the minutia
orientation. Thus, to every minutia in a fingerprint, a function m;(z,y, #) is assigned
being the derivative of m;(z,y) in the direction 6;, such that

F{m;i(z,y,0)} = j(wx cos; + wy sinb;) - exp(—j(wx; + wyyi)). (4.4)

As with the SML algorithm, using a Gaussian filter and taking the magnitude of the
spectrum yields
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| Mo (wy, wys 08)| =

< w,% + w§>
exp | ————=
20,
z
Zj(wx cos; + wy sinb;) - exp(—j(wxx; + wyyi))‘ . (4.5)
i=1

4.2.2.3 Implementation

In the previous sections we introduced analytical expressions for the spectral minutiae
representations of a fingerprint. In order to obtain our final spectral representations,
the continuous spectra (4.3) and (4.5) are sampled on a polar-logarithmic grid. In
the radial direction A\, we use M = 128 samples between A\; = 0.1 and A\, = 0.6.
In the angular direction 3, we use N = 256 samples uniformly distributed between
0 =0 and 3 = w. Because of the symmetry of the Fourier transform for real-valued
functions, using the interval between 0 and 7 is sufficient. This polar-logarithmic
sampling process is illustrated in Figures 4.2 and 4.3.

The sampled spectra (4.3) and (4.5) will be denoted by St,(m, n;o1,) and So(m,n; 00),
respectively, with m = 1,...,M,n = 1,..., N. When no confusion can arise, the
parameter o and the subscripts L and O will be omitted. For each spectrum, the
horizontal axis represents the rotation angle of the spectral magnitude (from 0 to );
the vertical axis represents the frequency of the spectral magnitude (the frequency
increases from top to bottom). It should be noted that the minutiae spectrum is
periodic on the horizontal axis.

4.2.2.4 Spectral Minutiae Matching

Let R(m,n) and T'(m,n) be the two sampled minutiae spectra respectively achieved
from the reference fingerprint and the test fingerprint. Both R(m,n) and T'(m,n)
are normalized to have zero mean and unit energy. We use the two-dimensional
correlation coefficient between R and T' as a measure of their similarity.

In practice, the input fingerprint images are rotated and might be scaled (for example,
depending on the sensor that is used to acquire an image). Assume that the scaling
has already been compensated for on the level of the minutiae sets [43]. Then we
only need to test a few rotations, which become the circular shifts in the horizontal
direction. We denote T'(m,n — ncs) as a circular shifted version of T'(m,n). We use
the fast rotation searching algorithm, based on variable stepsizes that was presented
in [56]? and choose the maximum score of the different combinations as the final
matching score between R and T,

2In [56], totaly 9 rotations are tested in a range of —10° to +10° in case of N = 256 samples
between 0 to m.
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Fig. 4.2: Illustration of the polar-logarithmic sampling (SML spectra). (a) the Fourier
spectrum in a Cartesian coordinate and a polar-logarithmic sampling grid; (b) the Fourier
spectrum sampled on a polar-logarithmic grid.

Fig. 4.3: Illustration of the polar-logarithmic sampling (SMO spectra). (a) the Fourier
spectrum in a Cartesian coordinate and a polar-logarithmic sampling grid; (b) the Fourier
spectrum sampled on a polar-logarithmic grid.
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m,n

—15 < ngs < 15. (4.6)

4.2.3 Column-PCA feature reduction (CPCA)

The spectral minutiae feature is a d = M x N = 32,768 real-valued feature vector.
This high dimensionality can lead to the small sample size problem [68]. Small sample
size effects are normally encountered in applications with high dimensional features
and a complex classification rule, while the number of available training samples is
inadequate. A sophisticated classifier relies on assumptions about the statistics of the
feature vectors that are obtained from training data. A mismatch between the actual
statistics and the assumptions will lead to a loss of recognition performance. We
can increase robustness against this type of mismatch by reducing the feature space
dimensionality. PCA is a commonly used tool to achieve this, which at the same time
decorrelates the features [69].

4.2.3.1 PCA feature reduction and its problem on spectral minutiae rep-
resentation

In order to illustrate the problem of directly applying PCA on the features Sy,(m,n)
and So(m,n), let ¥ = (x1,...,2p)T denote the unreduced spectral minutiae fea-
ture vector, that is, a one-dimensional form of the two-dimensional spectral minutiae
S(m,n), with m = 1,...,M,n =1,...,N (M = 128 and N = 256). Thus, the
dimensionality of ¥ is D = M x N = 32,768.

If we have L samples 71, ..., £y, in the training set, we can create a D x L data matrix
X consisting of all the samples, as X = [#1,...,Z1]. PCA can be implemented by
doing a singular value decomposition (SVD) on the matrix X,

X = UxSxVy, (4.7)

with Ux a D x L (D > L) orthonormal matrix spanning the column space of X, Sx a
L x L diagonal matrix of which the (non-negative) diagonal elements are the singular
values of X in descending order, and Vx a L x L orthonormal matrix spanning the row
space of X. Let Ux be the submatrix of Ux consisting of the first Dpca(Dpca < L)
columns, then we can implement PCA by

Y = ULX, (4.8)

with Y the Dpca x L data matrix with reduced dimensionality.
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However, there are two problems in performing PCA to implement feature reduction
on the minutiae spectra. The first is the small sample size problem [68]. In case the
feature vector is an unreduced spectral minutiae representation, the dimensionality of
the feature vector is D = 32,768. A reliable PCA feature reduction requires a large
number of fingerprint samples to implement the PCA training, which is difficult to
acquire. The second problem is that the minutiae spectra are not rotation-invariant.
As we mentioned in the previous section, the rotation of fingerprints becomes a circular
shift of the minutiae spectra in the horizontal direction. For the PCA training, all the
minutiae spectra must be aligned in order to get meaningful results. Then both the
training and matching processes become complicated. To cope with the small sample
size problem and to avoid the rotation alignment of minutiae spectra, we introduce
the Column-PCA method to perform feature reduction.

4.2.3.2 Column-PCA: feature reduction without small sample size prob-
lems

We first look at the spectral minutiae feature S in the 2D case as we presented in
Section 4.2.2.3. From Figures 4.2 and 4.3, we can see that the minutiae spectrum
is periodic on the horizontal axis. Moreover, on the vertical axis, the spectra with
different frequencies are correlated. Therefore, we consider to use PCA to decorrelate
the spectra with different frequencies in the vertical direction. To achieve this, we
regard each column of S as a new feature vector 7 = (21,...,z2p) " (we will call Z a
column feature vector later in this paper), then each (sampled) minutiae spectrum
S(m,n) consists of N feature vectors 2, S = (%1, ..., Zn).

If we have L samples Si, ..., Sp, in the training set, we can create a M x Ly (Ln =
N x L, N = 256) data matrix Z consists of all the samples, as Z = [21, ..., Zry]. In this
case, the dimensionality of the column feature vector 2, M = 128, is N times smaller
than the dimensionality of the spectral minutiae D = M x N = 32, 768. At the same
time, the sample size Ly is N times bigger than the previous sample size L. If we
denote 75 as the rate of the sample size [ to the feature dimensionality d, rs = é, we
can see that in case the sample number L keeps the same, the rq of using the column
feature vector is N2 = 65, 536 times bigger than the one of using the original feature
vector. Therefore, by using column feature vectors of spectral minutiae to implement

PCA feature reduction, we can avoid the small sample size problem.

As we indicated in the previous section, another problem of directly using minu-
tiae spectra to implement PCA feature reduction is that a rotation alignment of the
minutiae spectra is needed, which is difficult to implement. In the spectral minu-
tiae representation, the rotation operator commutes with column transformation. By
using column feature vectors, the rotation variation becomes the samples sequence
difference in the training procedure. This will not have any influence on the PCA
feature reduction results. Therefore, by using column feature vectors to implement
PCA feature reduction, we can cope with both the small sample size problem and
avoid the rotation alignment of minutiae spectra as well. We call this method as the
Column-PCA feature reduction (CPCA).
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To implement CPCA, we first subtract the sample mean (column mean) from the
data matrix Z. The next step is to apply SVD on Z,

Z =UzS;V;, (4.9)

with Uz a M x M orthonormal matrix spanning the column space of Z, Sz a M x M
diagonal matrix of which the (non-negative) diagonal elements are the singular values
of Z in descending order, and Vz a Ly X M orthonormal matrix spanning the row
space of Z. Finally we can obtain the CPCA transform matrix Uy by retaining the
first Mcpca(Mcpca < M) columns of Uy. The CPCA transform on the minutiae
spectra S(m,n) is written as

Scrca = UZS, (4.10)

with Scpca the Mcpca X N data matrix with reduced dimensionality. After the
CPCA feature reduction, the relation of the energy retainment rate Ecpca and
Mcpca is

Mcpca
Z SZ(nan)
Ecpca(Mcpca) = ";[1—7 1 < Mcpca < M, (4.11)
Z SZ(na TL)
n=1
and
M
Z SZ(TL, n)
Mcpca(Ecpca) = arg  min n;lli — Ecpcal- (4.12)
1<M<M
Z SZ(TL, n)
n=1

The CPCA transform is illustrated in Figures 4.4(a) and 4.4(b) (here we choose
ﬁz = Uy, that is, Mcpca = M for a clear illustration). We can see that after the
CPCA transform, the main energy of the original minutiae spectrum S is concentrated
in the top lines of Scpca. By only retaining the top Mcpca lines, we perform the
CPCA feature reduction, with a reduction rate Rcpca = (M — Mcpcoa)/M. Because
the rotation operator commutes with column transformation, the minutiae spectrum
Scpca remains periodic on the horizontal axis after the CPCA transform.
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(c)

Fig. 4.4: Tlustration of the CPCA transform and the LDFT representation. (a) the location-
based spectral minutiae; (b) the minutiae spectrum after the CPCA transform; (c) the
magnitude of the LDFT representation of (b).
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4.2.4 Line-DFT feature reduction (LDFT)

The CPCA feature reduction method reduces the minutiae spectrum feature S in the
vertical direction. In this section, we will introduce the Line-DFT feature reduction
(LDFT) method, which will reduce the feature in the horizontal direction. This
method is based on the fact that the minutiae spectrum S is periodic on the horizontal
axis. Therefore, it can be applied both independently and in combination with the
CPCA feature reduction.

4.2.4.1 Line-DFT representation of the minutiae spectrum

We denote each line of the minutiae spectrum S (here S can be the original minutiae
spectrum or the minutiae spectrum after the CPCA feature reduction) as a line feature
vector 4 = (y1,...,yn), thus S = (¥1, ..., 7ar)T. Then we can regard each line feature
vector as a periodic discrete-time signal (or sequence) with period N, and we denote
this signal as y,,(n), (m = 1,..., M) (M = 128 for the original minutiae spectrum
or M = Mcpca for the spectrum after the CPCA feature reduction). The discrete
Fourier transform [70] of y,,(n) is given by

N-1
2
Yo (k) = Z Ym(n) exp(—j%kn), k=0,1,...N—-1,m=1,...,. M. (4.13)
n=0

Because y,,(n) is periodic, by performing a DFT (implemented as FFT) on each line
Ym(n) of the minutiae spectrum S, we obtain Spprr = (Y1 (k), ..., Yar(k))T, SLorT €
CM | which is an exact representation of S.

The LDFT representation is illustrated in Figures 4.4(b) and 4.4(c) (here the LDFT
representation after the CPCA feature reduction is presented). We can see that after
the LDFT representation, the main energy is concentrated in the low frequency part
(the middle columns). Therefore, for each line of the LDFT representation Spprr, we
only retain the Fourier components with a certain percentage of energy (for example,
80%) in the lower frequency part. By reducing the number of Fourier components, we
implement the LDFT feature reduction. For each line m, the relation of the energy
retainment rate Epppr after the LDFT feature reduction and Nyppr (which indicates
that only the Npppr Fourier components from the low frequency part are retained)
is

Evprr(Nuprr;m) =
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and

N-1

2
> [Vin(k)]
k=0
N/2

> Yk
k=0

Niprr(Epprr;m) = arg  min — Eiprr| - (4.15)

I<N<N/2+1

As we mentioned in Section 4.2.2.4, the rotation of the fingerprint becomes the cir-
cular shift of the minutiae spectrum along the horizontal axis in the space domain.
To test different fingerprint rotations (see Section 4.2.2.4) after applying the LDFT
representation, we will implement the shift operation in the frequency domain ac-
cording to the shift property of the discrete Fourier transform. Thus, the Line-DFT
transformation of T'(m,n — ns) in Equation (4.6) becomes

T(m,n—nes) = (y1(n — nes)y ooy yar(n — ncs))T
LDFT exp(—j%kncs)(lﬁ (k), oo, Yar (k)" (4.16)

4.2.4.2 Transform of Fourier components to a real-valued feature vector

Consider two discrete-time, periodic signals fi[n] and fa[n], fi[n], f2[n] € RV, with
period N (N is an even number), and their discrete Fourier transform are F;[k]
and Fy[k] respectively. The DFT is orthnormal, thus it preserves inner products.
Therefore, because of the symmetry properties of the DF'T for real-valued signals, the
correlation of f1[n] and f2[n] becomes

N-1 | N1
Yo AlFER = 5 Y BkER 417)
n=0 k=0
- %(Fl [0]F[0] + 2R Z Fy[k|F5 k] + Fl[g]FQ[g]),@.lg)
k=1

where * denotes the complex conjugate and ® denotes the real part.

Because Fi[k] and F[k| are complex numbers, we can write them as

Filk] = Ai[k] +iBi[k], i = 1,2, (4.19)
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with A;[k] the real part, and B;[k] the imaginary part. Then, Equation (4.17) becomes

= finlfiln) = 5 (4110]42(0
+2 3 (A Ak + By K Balk]) + 41 L)), (4.20)

Therefore, we can generate two one dimensional real-valued feature vectors v and v3
from the Fourier components, as

w= (a0 /24, 2N gy gy
vi—<\/NA1[O],\/;A1[1],...,\/;A1[2 1), o= Al

\/%Bim,...,\/%&[g - 1]) Li=1,2. (4.21)

The correlation of v7 and v3 is exactly the same as the correlation of the real-valued
signals fi[n] and fa[n]. Therefore, by generating the new feature vectors as v1 and v3,
we can continue using the correlation-based spectral minutiae matching algorithm.
Moreover, by performing the correlation of v7 and v3, instead of implementing the
complex number multiplications as in Equation (4.17), we can save about half of the
real multiplications.

In case the LDFT feature reduction, with 1 < Npppr < %, the reduced feature
vectors v; and v5 become

s (a0 2a, 24, _
v; = <\/NA’L|:O])\/;A1[1]7"'7\/;A’L[NLDFT 1],
\/%Bi[l], \/%Bi[NLDFT - 1]) Ji=1,2. (4.22)

For the matching algorithm presented in Section 4.2.2.4, we denote v, and v¢p, , as
the reduced features of R(m,n) and T'(m,n — n¢s) respectively, then Equation (4.6)
becomes

1
GRT) _ max{m Zwt%}, —15 < ngs < 15. (4.23)

Nes
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4.2.5 Experiments
4.2.5.1 Measurements

We test the spectral minutiae representation in a verification setting. The matching
performance of a fingerprint verification system can be evaluated by means of several
measures. Commonly used are the false acceptance rate (FAR), the false rejection
rate (FRR), and the equal error rate (EER). In this paper, we use FAR, EER and
the genuine acceptance rate (GAR), GAR= 1-FRR, as performance indicators of our
scheme.

4.2.5.2 Experimental settings

The proposed algorithms have been evaluated on MCYT [46] and FVC2002-DB2 [48]
fingerprint databases. The fingerprint data that we used from MCYT are obtained
from 145 individuals (person ID from 0000 to 0144 and finger ID 0) and each individual
contributes 12 samples. We use samples from person ID 0100 to 0144 for the CPCA
and LDFT training (totally 540 fingerprints) and samples from person ID 0000 to 0099
for test (totally 1200 fingerprints). We also tested our algorithms on the FV(C2002-
DB2 because it is a public-domain fingerprint database. Compared with MCYT, the
fingerprints in FVC2002 have lower quality and bigger displacements. For the FVC
database, we apply the same experimental protocol as in the FVC competition: the
samples from finger ID 101 to 110 for the CPCA and LDFT training (totally 40
fingerprints) and samples from person ID 1 to 100 for test (totally 400 fingerprints)3.
The minutiae sets were obtained by the VeriFinger minutiae extractor [11]%.

We test our algorithm in a verification setting. For matching genuine pairs, we used
all the possible combinations. For matching imposter pairs, we chose the first sample
from each identity. We will further follow the same parameter setting in [34]°.

4.2.5.3 Results without CPCA and LDFT feature reductions

For a comparison with the results after the CPCA and the LDFT feature reductions,
we first tested our algorithm without feature reductions. The results are shown in
Table 4.1 and the ROC curves are shown in Figures 4.5(a) and 4.6(a). From the
results, we can see that the MCYT database received much better results than the

3We propose to use our algorithm in a high security scenario. In FVC2002 databases, samples
3, 4, 5 and 6 were obtained by requesting the biometric data subjects to provide fingerprints with
exaggerated displacement and rotation. In a high security scenario where the biometric data subject
is aware that cooperation is crucial for security reasons, he will be cooperative. Therefore, only
samples 1, 2, 7 and 8 are chosen. To deal with the large rotations, an absolute pre-alignment based
on core and its direction can be applied.

4VeriFinger Extractor Version 5.0.2.0 is used.

5We will only present the sum-rule fusion results of SML and SMO in this paper. We also use
the singular points to assist the verification, following the procedure in [34].
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Table 4.1: Results without CPCA and LDFT feature reductions.

GAR
Databases EER | FAR = 1% | FAR = 0.1% | FAR = 0%
MCYT 0.30% | 99.8% 99.7% 99.1%
FVC2002-DB2 | 3.86% 95.5% 92.7% 89.7%

FVC database. This shows that our algorithms are sensitive to the minutiae quality
and fingerprint quality.

4.2.5.4 Results after CPCA and LDFT feature reductions

In case of using SML and SMO fusion, the spectral minutiae representation results in
a 65,536 real-valued feature vector. For fingerprint identification systems with very
large databases, using the spectral minutiae representation requires a big template
storage space and its matching speed is also limited. Therefore, applying the proposed
CPCA and LDFT feature reduction algorithms is needed. To evaluate the two feature
reduction methods, we tested them in three cases: (1) only applying the CPCA feature
reduction; (2) only applying the LDFT feature reduction; (3) applying both the CPCA
and the LDFT feature reductions.

From our experiments, we noticed that the selection of the energy retainment rates
FEcpca and Epppr are essential for a high performance. When Ecpca and Eppgr are
chosen, we can calculate Mcpca and Nyprr, using the fingerprints in the training
sets, according to Equations (4.12) and (4.15).

4.2.5.5 Only applying the CPCA feature reduction

When only applying the CPCA feature reduction, the energy retainment rates Ecpca
and the feature reduction rates for the two databases are shown in Table 4.2. The
results we achieved are shown in Table 4.3 and the ROC curves are shown in Fig-
ures 4.5(b) and 4.6(b). From Figures 4.5(b) and 4.6(b), we can see that the CPCA
feature reduction does not degrade the recognition performance of the system. At the
same time, we reach a feature reduction rate of more than 70% (the feature length
is about 4 times smaller). In the FVC2002-DB2 case, we only used 40 fingerprints
for the training and we still performed an effective feature reduction. This illustrates
that the CPCA feature reduction does not suffer from the small sample size problem.

4.2.5.6 Only applying the LDFT feature reduction

When only applying the LDFT feature reduction, the energy retainment rates Eyppr
and the feature reduction rates for the two databases are shown in Table 4.4. From
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Table 4.2: Parameters of the CPCA feature reduction.

MCYT FV(C2002-DB2
SML | SMO | Fusion | SML | SMO | Fusion
Ecpca 85% 90% 87.5% 85% 90% 87.5%
Reduction | 76.6% | 78.1% | 77.3% | 67.2% | 76.6% | 71.9%

Table 4.3: Results after the CPCA feature reduction.

GAR
Databases EER ['EAR = 1% | FAR = 0.1% | FAR = 0%
MCYT 0.30% 99.8% 99.6% 99.2%
FVC2002-DB2 | 3.72% 95.4% 92.6% 89.7%

Table 4.4: Parameters of the LDFT feature reduction.

MCYT FVC2002-DB2
SML | SMO | Fusion | SML | SMO | Fusion
Erprr 97% | 99.5% | 98.3% | 97% | 99.8% | 98.4%
Reduction | 81.4% | 88.5% | 84.9% | 77.5% | 89.0% | 83.3%

Table 4.5: Results after the LDFT feature reduction.

GAR
Databases EER | FAR = 1% | FAR = 0.1% | FAR = 0%
MCYT 0.29% | 99.8% 99.7% 99.1%
FVC2002-DB2 | 3.72% |  95.6% 92.7% 89.7%

Table 4.4 we can see that we achieved a higher reduction rate for SMO, at the same
time the energy retainment is also higher. The reason is that for SMO, we used a
Gaussian kernel to attenuate the higher frequencies. The LDFT feature reduction can
achieve a higher reduction rate in case the minutiae spectra are with lower frequencies.

The results we achieved after the LDFT feature reduction are shown in Table 4.5
and the ROC curves are shown in Figures 4.5(c) and 4.6(c). From Figures 4.5(c)
and 4.6(c), we can see that the LDFT feature reduction does not degrade the recog-
nition performance of the system. At the same time, we reach a feature reduction
rate of about 84% (the feature length is more than 6 times smaller). The same as the
CPCA feature reduction, the LDFT feature reduction also does not suffer from the
small sample size problem.
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4.2.5.7 Applying both the CPCA and the LDFT feature reductions

After testing the CPCA and the LDFT feature reductions separately, we tested the
combination of the two methods. We applied the LDFT feature reduction after the
CPCA feature reduction. The final energy retainment rates Fcpca and Epppr, and
the feature reduction rates for the two databases are shown in Table 4.6. The results
we achieved are shown in Table 4.7 and the ROC curves are shown in Figures 4.5(d)
and 4.6(d). From Figures 4.5(d) and 4.6(d), we can see that after applying the CPCA
and the LDFT feature reductions, the recognition performance is not degraded. We
finally reach a feature reduction rate of about 92-94% (the feature length is more than
13-15 times smaller).

Comparing the three different feature reduction cases (the ROC curves in Figures 4.5(b)-
(d) and 4.6(b)-(d)), we can see that all these three cases show similar recognition per-
formances, while the combination of CPCA and LDFT received the biggest feature
reduction rates.

For fingerprint identification systems with very large databases, the matching speed
is crucial. In case the feature length is d and n, rotation possibilities are tested (in
our experiments n, = 9), we need to implement n.d real multiplications. Therefore,
applying the feature reductions to decrease d will improve the speed performance of
our scheme. We tested the matching speed for the fusion case of SML and SMO before
and after the CPCA and the LDFT feature reductions (using the MCYT database).
Without feature reductions, we can implement 8,000 comparisons per second using
optimized C language programming on a PC with Intel Pentium D processor 2.80
GHz and 1 GB of RAM. After applying CPCA and LDFT, we can implement 125,000
comparisons (the speed is more than 15 times faster) under the same setting.

4.2.5.8 Comparison

We compared our results with other well-known minutiae matchers on the FVC2002-
DB2 database: VeriFingerS and Fuzzy Vault according to the protocol in [32]. The
results are shown in Table 4.8. We notice that the commercial minutiae matcher
VeriFinger obtained much better results than ours. One reason is that the VeriFin-
ger matcher uses some fingerprint features that are not defined in the ISO minutiae
template [43]. Another reason is that, with our global representation, we cannot per-
form minutiae pair searching, which is a crucial step for the minutiae-based matching.
These two reasons may cause the degradation of our algorithm compared with Ver-
iFinger.

We also compared the performance of our method with a minutiae-based fingerprint
recognition system combined with a template protection scheme based on fuzzy vault,
which is presented in [32]. The reason of this comparison is that in [32] an alignment
between a fingerprint pair using minutiae information is also not possible. It should
be noted that [32] includes a template protection scheme, whereas our system does

6VeriFinger Extractor Version 5.0.2.0 and VeriFinger Matcher version 5.0.2.1 are used.
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Table 4.6: Parameters of the CPCA and the LDFT feature reductions.

MCYT FVC2002-DB2
Methods ["s\p, [ SMO [ Fusion | SML [ SMO [ Fusion
Ecrca | 83% | 90% | 86.5% | 75% | 92% | 83.5%
Reduction | 78.1% | 78.1% | 78.1% | 7% | 75% | 5%
Evprr 99% | 99% [ 99% | 97% | 98% | 97.5%
Reduction | 69.5% | 74.2% | 72.0% | 68.1% | 72.5% | 70.4%
Brow | 822% | 89.1% | 85.6% | 72.8% [ 90.2% [ 81.5%
Reduction | 92.9% | 94.0% | 93.5% | 92.0% | 93.1% | 92.6%

Table 4.7: Results after the CPCA and the LDFT feature reductions.

GAR
Databases EER ['FAR = 1% | FAR = 0.1% | FAR = 0%
MCYT 0.30% 99.8% 99.7% 99.2%
FVC2002-DB2 | 3.52% 95.1% 92.0% 90.7%

Table 4.8: Results comparison on FVC2002-DB2.

GAR
Methods EER |'FAR = 1% | FAR = 0.1% | FAR = 0%
Our method | 3.52% 95.1% 92.0% 90.7%
VeriFinger 1.0% 99% 98.8% 98.6%
Fuzzy Vault - - 91% 86%

Table 4.9: Performances after CPCA and LDFT for high GAR.

FAR
Databases GAR = 100% | GAR = 99.9% | GAR = 99%
MCYT 49.4% 6.7% 0%
FVC2002-DB2 90.0% 88.5% 45.5%
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not. Moreover, because [32] implemented an alignment using high curvature points,
this caused a 2% failure to capture rate (FTCR), while our method does not suffer
from this.

Regarding the speed performance’, using the spectral minutiae representation after

the CPCA and the LDFT feature reductions, we can implement 125,000 comparisons
per second. We also tested the VeriFinger matcher using the same PC setting and
the matching speed is 8,000 comparisons per second. Our matching speed advantage
is due to the fact that our algorithm uses a fixed-length feature vector and avoids
fingerprint alignment. After applying CPCA and LDFT, the feature length is greatly
reduced, which leads to a promising matching speed.

In case of fingerprint identification systems with very large databases, we might com-
bine good identification performance and speed by using the spectral minutiae as a
pre-selector, that finds a number of best matches and then use a standard minutiae
comparison for a good accuracy. As a pre-selector, the recognition performance in the
area of high GAR is important. We show the performance of the spectral minutiae
in this area in Table 4.9. From Table 4.9, we can see that in case of good quality
fingerprints (MCYT), we can use the spectral minutiae algorithm as a pre-selector
to speed up the minutiae-based matching algorithm. However, the spectral minutiae
algorithm is not robust to the low quality fingerprints. The fingerprint outliers will
degrade the recognition accuracy, which limits the application of the spectral minutiae
algorithm.

4.2.6 Conclusions

The spectral minutiae representation is a novel method to represent a minutiae set as a
fixed-length feature vector, which is invariant to translation, and in which rotation and
scaling become translations, so that they can be easily compensated for. Based on the
spectral minutiae feature, this paper introduces two feature reduction methods: the
Column-PCA and the Line-DFT feature reduction algorithms. The experiments show
that these methods effectively decrease the spectral minutiae feature dimensionality
with a reduction rate of 94%, while at the same time, the recognition performance of
the fingerprint system is not degraded. The proposed spectral minutiae fingerprint
recognition system also shows a promising matching speed with 125,000 comparisons
per second. This algorithm overcomes the speed disadvantage of most minutiae-based
algorithms and enables the application of a minutiae-based fingerprint identification
system with a large database.

The spectral minutiae representation also enables the combination of fingerprint recog-
nition systems and template protection schemes. In order to be able to apply the spec-
tral minutiae representation with a template protection scheme, for example based
on a fuzzy extractor [53], the next step would be to extract bits that are stable for

"For fingerprint identification systems with large databases, only matching time is crucial. For
the enrollment speed, because our algorithm only uses one-sample enrollment, our enrollment time
is comparable to the one from VeriFinger.
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the genuine user and completely random for an arbitrary user. For example, we can
apply 2D Gabor filters for bit extraction, which has been used in iris codes [54].
Another possibility is to first apply additional dimensionality reduction by a combi-
nation of PCA and LDA and then apply single bit extraction according to the reliable
component scheme or multi bit extraction [55].

In this paper, we presents the experimental results using two fingerprint databases:
the MCYT and the FVC2002-DB2 databases. The MCYT database gives much better
results than the FVC database. This shows that our algorithms are sensitive to the
minutiae quality as well as the fingerprint quality. To cope with the low quality
fingerprints and minutiae errors are topics of our further research.

4.3 Chapter Conclusions

In this chapter, we introduced two feature reduction methods to reduce the spectral
minutiae feature set: the Column Principle Component Analysis (CPCA) feature
reduction algorithm, which reduces the spectral minutiae feature in the vertical direc-
tion, and the Line Discrete Fourier Transform (LDFT) feature reduction algorithm,
which reduces the feature in the horizontal direction.

The CPCA and LDFT feature reduction algorithms can effectively reduce the feature
dimensionality, while maintaining the recognition performance. These two methods
can be applied independently or in conjunction. In Chapters 5 and 6, these two
methods will also be applied to the Complex Spectral Minutiae Representation (SMC).

Table 4.10: The contributions of Chapter 4 and their achieved targets.

Contribution(s) | Target(s)

CPCA Target V: High comparison speed
LDFT

With regard to the research question and the targets of this thesis that are brought
forward in Section 1.3, this chapter addressed Target V, high comparison speed. With
CPCA and LDFT, we can reduce the template size significantly and increase the
comparison speed up to 15 times. The contributions of this chapter together with
their achieved targets are summarized in Table 4.10.



Chapter

Complex Spectral Minutiae
Representation

5.1 Chapter Introduction

PURPOSE. Up to now, we have introduced two spectral minutiae representation
methods: SML and SMO. Although SMO incorporates the minutiae orientations,
it did not show better results than SML in the experiments shown in the previous
chapters. This motivated us to design another spectral minutiae representation that
incorporates minutiae orientations. In this chapter, we will introduce this new version:
the complex spectral minutiae representation (SMC).

CONTENTS. We first illustrate a general procedure of the spectral minutiae rep-
resentations. Then we present the complex spectral minutiae representation (SMC)
together with the previous SML and SMO representations. Finally, we evaluate the
performances of SML, SMO and SMC on the FVC2002-DB2 and MCYT databases.
In the experiments, the CPCA and LDFT feature reduction methods are also evalu-
ated on all the SML, SMO and SMC features. The results show that SMC improves
the recognition accuracy, expressed in terms of the equal error rate, about 2-4 times
compared with SML and SMO. In the context of the system diagram, the content
of this chapter and its referred blocks are highlighted in Figure 5.1. Since SMC out-
performed SML and SMO, in Chapter 6, the binary representations will be mainly
investigated for the SMC features.

PUBLICATION(S). The content of Section 5.2 of this chapter has been published
in [71].

A NOTE TO READERS. The readers can focus on Section 5.2.2 that introduces
the SMC algorithm. The SML (Section 5.2.2.1) and SMO (Section 5.2.2.2) parts are
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Fig. 5.1: Block diagram of our designed system, highlighting the content of Chapter 5 and its
referred blocks.

repetitive from Chapter 2, and the CPCA and LDFT feature reduction algorithms
(Section 5.2.3) have already been introduced in Chapter 4. The readers can skip these
parts.

5.2 Complex Spectral Minutiae Representation For
Fingerprint Recognition

Abstract

The spectral minutiae representation is designed for combining fingerprint recognition
with template protection. This puts several constraints to the fingerprint recognition
system: first, no relative alignment of two fingerprints is allowed due to the encrypted
storage; second, a fixed-length feature vector is required as input of template protec-
tion schemes. The spectral minutiae representation represents a minutiae set as a
fixed-length feature vector, which is invariant to translation, rotation and scaling.
These characteristics enable the combination of fingerprint recognition systems with
template protection schemes and allow for fast minutiae-based matching as well. In
this paper, we introduce the complex spectral minutiae representation (SMC): a spec-
tral representation of a minitiae set, as the location-based and the orientation-based
spectral minutiae representations (SML and SMO), but it encodes minutiae orienta-
tions differently. SMC improves the recognition accuracy, expressed in terms of the
equal error rate, about 2-4 times compared with SML and SMO. In addition, the pa-
per presents two feature reduction algorithms: the Column-PCA and the Line-DFT
feature reductions, which achieve a template size reduction around 90% and results
in a 10-15 times higher matching speed (with 125,000 comparisons per second).
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5.2.1 Introduction

Fingerprint recognition systems have the advantages of both ease of use and low cost.
Nowadays, most fingerprint recognition systems are based on minutiae matching [35].
However, minutiae-based fingerprint matching algorithms have some drawbacks that
limit their application.

First, due to the fact that minutiae sets are unordered, the correspondence between
individual minutia in two minutiae sets is unknown before matching and this makes it
difficult to find the geometric transformation that optimally registers (or aligns) two
sets. This registration challenge causes minutiae-based matching algorithms to be-
come rather slow. For fingerprint identification systems with very large databases [21],
in which a fast comparison algorithm is necessary, minutiae-based matching algo-
rithms will fail to meet the high performance speed requirement.

Second, the increasing widespread use of biometrics has raised substantial privacy
concerns [27]. Researchers have shown the possibility of reconstructing fingerprints
from minutiae templates [72]. Therefore, protecting minutiae templates becomes
necessary. To combine fingerprint recognition with template protection, there are
new constraints to the fingerprint recognition system: (1) no relative alignment of
two fingerprints is allowed due to the encrypted storage; (2) the recently developed
template protection schemes based on fuzzy commitment and helper data schemes,
such as [5] and [33], require as an input a fixed-length feature vector representation
of a biometric modality?.

There are several algorithms to extract a fixed-length feature vector from fingerprints.
The FingerCode as presented in [4] is based on ridge features. The author concluded
that FingerCodes are not as distinctive as minutiae and they can be used as comple-
mentary information for fingerprint matching. Willis and Myers brought forward a
fixed-length minutiae wedge-ring feature [60], which recorded the minutiae numbers
on a pattern of wedges and rings. However, this method can only perform a coarse
fingerprint authentication, and cannot handle big translations and rotations. Park
et al. proposed a feature vector based on the distribution of the pairwise distances
between minutiae [61]. However, this algorithm is only evaluated on the manually
labeled minutiae and the performance is not satisfying.

The spectral minutiae representation is a method that overcomes the drawbacks of
the minutiae algorithms, thus broadening the application of minutiae-based algo-
rithms [34]. This method represents a minutiae set as a fixed-length feature vector,
which is invariant to translation, and in which rotation and scaling become transla-
tions, so that they can be easily compensated for. These characteristics enable the
combination of fingerprint recognition systems with template protection schemes and
allow for faster matching as well. Moreover, the spectral minutiae representation
method can be easily integrated into a minutiae-based fingerprint recognition system.
Minutiae sets can be directly transformed to this new representation, which makes

LOther template protection systems exist [32] that do not pose this fixed-length feature vector
requirement.
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Fig. 5.2: Nlustration of the general spectral minutiae representation procedure (images from
the SMO case). (a) a fingerprint and its minutiae; (b) representation of minutiae points
as real (or complex) valued continuous functions; (¢) the 2D Fourier spectrum of ‘b’ in
a Cartesian coordinate and a polar-logarithmic sampling grid; (d) the Fourier spectrum
sampled on a polar-logarithmic grid.

this method compatible with the large amount of existing minutiae databases.

In [34], the concept of the two representation methods are introduced: the location-
based spectral minutiae representation (SML) that codes the minutiae locations, and
the orientation-based spectral minutiae representation (SMO) that codes both minu-
tiae locations and orientations. Although SMO incorporates the minutiae orienta-
tions, it did not show better results than SML in the experiments performed in [34].
This motivated us to design another spectral minutiae representation that incorpo-
rates minutiae orientations: the complex spectral minutiae representation (SMC). We
denote it as complex in the sense that minutiae are represented as complex valued con-
tinuous functions in the spatial domain. We will also present two feature reduction
algorithms designed for the spectral minutiae representations: the Column Princi-
pal Component Analysis (CPCA) and the Line Discrete Fourier Transform (LDFT)
feature reduction algorithms. By applying feature reductions, we can reduce the tem-
plate storage and at the same time increase the matching speed, which is a critical
factor for many large-scale biometric identification systems.

This paper is organized as follows. First, we give the background of the spectral
minutiae representation and introduce the complex spectral minutiae representation in
Section 5.2.2. Next, in Section 5.2.3, we present the Column-PCA and the Line-DFT
feature reduction algorithms. Then, Section 5.2.4 shows the experimental results.
Finally, we draw conclusions in Section 5.2.5.

5.2.2 Spectral Minutiae Representations

The objective of the spectral minutiae representation is to represent a minutiae set as
a fixed-length feature vector, which is invariant to translation, rotation and scaling.
In Figure 5.2, a general procedure of the spectral minutiae representation is illus-
trated. Step 1: we represent minutiae points as real (or complex) valued continuous
functions, illustrated in Figure 5.2(b). In this representation, translation, rotation



5.2 Complex Spectral Minutiae Representation For Fingerprint Recognition 109
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Fig. 5.3: Representations of one minutiae point as a real valued continuous function. (a)
SML; (b) SMO.

and scaling may exist, depending on the fingerprint sensors that have been used and
how the user has put his finger on the sensor. Step 2: a two-dimensional continuous
Fourier transform is performed and only the Fourier magnitude is kept, illustrated
in Figure 5.2(c). This representation is now translation invariant according to the
shift property of the continuous Fourier transform. Step 3: the Fourier spectrum is
re-mapped onto a polar-logarithmic coordinate system, illustrated in Figure 5.2(d).
According to the scale and rotation properties of the two-dimensional continuous
Fourier transform, now the rotation and scaling become translations along the new
coordinate axes. It should be noted that this representation can be computed analyt-
ically. We will present the details later. In this paper, we will review SML and SMO,
and then introduce SMC. These three representations are different in the “Step 17:
SML and SMO represent minutiae points as real-valued continuous functions, while
SMC represents minutiae as complex-valued continuous functions.

5.2.2.1 Location-based spectral minutiae representation (SML)

Assume we have a fingerprint with Z minutiae. In SML, we code the minutiae loca-
tions by indicator functions,

Z

(z —:)* + (y — v:)?
m(z,y;o8) Z 27r02 exp(— ! 207 ), (5.1)
=1

with (x;,y;) the location of the i-th minutia in the fingerprint image. Thus, in the
spatial domain, each minutia is represented by an isotropic two-dimensional Gaussian
function, illustrated in Figure 5.3(a).

Taking the Fourier transform of m(z,y;0?) and keeping only the magnitude of the
Fourier spectrum (in order to make the spectrum invariant to translation of the input),
we obtain the location-based spectral minutiae representation
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Mu(ws, wys of) =

exp( ws +ly )Zexp jwxx; + wyyi))| - (5.2)

5.2.2.2 Orientation-based spectral minutiae representation (SMO)

The SML only uses the minutiae location information. However, including the minu-
tiae orientation as well may give better discrimination. Therefore, it can be beneficial
to also include the orientation information in our spectral representation. In SMO,
the orientation 6 of a minutia is incorporated by using the spatial derivative of m(x,y)
in the direction of the minutia orientation, illustrated in Figure 5.3(b). As with the
SML algorithm, taking the magnitude of the Fourier spectrum yields

w)z( + w§
exp —720_2
o

) ‘

Mo(wx,wy;a%) =

X Zj(wx cosb; + wy sin ;) - exp(—j(wxx; + wyyi))| - (5.3)

i=1

5.2.2.3 Complex spectral minutiae representation (SMC)

Although SMO incorporates the minutia orientation 6, it did not show better results
than SML in the experiments performed in [34]. The main reason is: in SMO, the
minutiae orientation is incorporated as a derivative of the delta function, and this
amplifies the minutiae noise (both in location and orientation) in the high frequency
part of SMO. Therefore, a Gaussian kernel with higher o is needed for SMO to atten-
uate the noise in higher frequencies. However, the high frequency part also contains
discriminative information, especially in case the minutiae have good quality. This
limitation of SMO motivated us to design another spectral minutiae representation
that incorporates minutiae orientation: SMC.

In SMC, each minutia is first represented by an isotropic two-dimensional Gaussian
function in the spatial domain (here it is the same as SML). Then we incorporate the
minutiae orientation by assigning each Gaussian a complex amplitude el illustrated
in Figure 5.4. This results in a phase shift in the frequency domain. Taking the
magnitude of the Fourier spectrum yields

Mc(wx,wy;aé) = " _2

w +wy
exp ( ) Zexp jwxx; +wyyi) +365)| - (5.4)
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Fig. 5.4: An illustration of three minutiae points represented as complex valued continuous
functions.

5.2.2.4 Polar-logarithmic (or polar) sampling

In order to obtain the final spectral representations, the continuous spectra SML
(5.2), SMO (5.3) and SMC (5.4) need to be sampled on a polar-logarithmic (or polar-
linear) grid. A polar mapping transforms rotation to translation in the horizontal
direction, while a logarithmic mapping transforms scaling to translation in the vertical
direction?. In the radial direction A, we use M = 128 samples between A; and Ap. In
the angular direction 3, we use N = 256 samples uniformly distributed between 3 = 0
and 8 = 7w or 27 (because of the symmetry of the Fourier transform for real-valued
functions, using the interval between 0 and 7 for SML and SMO is sufficient). A
polar-logarithmic sampling process is illustrated in Figures 5.2(c) and 5.2(d). The
sampled spectra (5.2), (5.3) and (5.4) will be denoted by St,(m, n;o1), So(m,n;o00)
and Sc(m,n;oc), respectively. When no confusion can arise, the parameter o and
the subscripts L, O and C will be omitted.

Examples of the minutiae spectra achieved with SMC are shown in Figure 5.5. For
each spectrum, the horizontal axis represents the rotation angle of the spectral mag-
nitude (from 0 to 27); the vertical axis represents the frequency of the spectral mag-
nitude (the frequency increases from top to bottom). It should be noted that the
minutiae spectrum is periodic on the horizontal axis.

5.2.2.5 Spectral Minutiae Matching

Let R(m,n) and T'(m,n) be the two sampled minutiae spectra, respectively, achieved
from the reference fingerprint and test fingerprint. Both R(m,n) and T(m,n) are
normalized to have zero mean and unit energy. We use the two-dimensional correlation
coefficient between R and 7' as a measure of their similarity.

2In most fingerprint databases, there is no scaling difference between the fingerprints, or the
scaling can be compensated for on the level of the minutiae sets [43]. Therefore, we sample SML
and SMO in a polar-logarithmic grid in order to be consistent with [34], while we sample SMC in a
polar-linear grid, which can provide more samples in the higher frequency part.
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Fig. 5.5: Examples of minutiae spectra using SMC. (a) and (b) are the SMC spectra from
the same finger; (c) and (d) are the SMC spectra from the same finger.

In practice, the input fingerprint images are rotated and might be scaled (for example,
depending on the sensor that is used to acquire an image). Assume that the scaling
has already been compensated for on the level of the minutiae sets [43]. Then we
only need to test a few rotations, which become the circular shifts in the horizontal
direction. We denote T'(m,n — j) as a circularly shifted version of T'(m,n). We
use the fast rotation shift searching algorithm, based on variable stepsizes that was
presented in [56]> and finally the maximum score from different combinations is the
final matching score between R and T,

1
(RT) _ ;
S = mjax{ VN EnR(m,n)T(m,n Nt

—15 < j < 15. (5.5)

5.2.3 Spectral Minutiae Feature Reduction

The spectral minutiae feature is a 32,768-dimensional real-valued feature vector. The
large dimensionality of the spectral minutiae feature can cause three problems. First,
the template storage requirement is very high. Second, the high dimensionality leads

3In [56], totaly 9 rotations are tested in a range of —20° to +20° in case of N = 256 samples
between 0 to 27.
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to a computational burden and the matching speed will be limited. Third, the high
dimensionality can lead to a small sample size problem [68]. In order to cope with
these problems, we introduce two feature reduction methods: the Column Princi-
pal Component Analysis (CPCA) and the Line Discrete Fourier Transform (LDFT)
feature reduction algorithms, which can be applied in conjunction.

5.2.3.1 Column-PCA feature reduction (CPCA)

Principal component analysis (PCA) if often used in dimensionality reduction. How-
ever, there are two problems in implement PCA on the spectral minutiae represen-
tations. The first is the small sample size problem. An unreduced spectral minutiae
representation has a dimensionality of D = 32,768. A reliable PCA feature reduc-
tion requires a large number of fingerprint samples to implement the PCA training,
which is difficult to acquire. The second problem is that the minutiae spectra are
not rotation-invariant. As we mentioned in the previous section, the rotation of fin-
gerprints becomes a circular shift in the horizontal direction. For the PCA training,
all the minutiae spectra must be aligned beforehand in order to get meaningful re-
sults. Then both the training and matching processes become complicated. To cope
with these problems, we introduce the Column-PCA method to perform a feature
reduction.

We first look at the spectral minutiae feature S in the 2D case as we presented in
Section 5.2.2.4. From Figure 5.5, we can see that the minutiae spectrum is periodic
on the horizontal axis. Moreover, on the vertical axis, the spectra with different
frequencies are correlated. Therefore, we consider to use PCA to decorrelate the
spectra with different frequencies in the vertical direction. To achieve this, we regard
each column of S as a new feature vector, thus S = (27, ..., Zn), with Z column feature
vectors.

If we have L samples S1,...,S1, in the training set, we can create a M x Ly (Ly =
N x L, N = 256) data matrix Z consists of all the samples, as Z = [z1, ..., ZLy]. To
implement CPCA, we first subtract the sample mean (column mean) from the data
matrix Z. The next step is to apply SVD on Z,

Z =US,Vy. (5.6)
Finally we can obtain the CPCA transform matrix Uy by retaining the first Mcpca

(Mcpca < M) columns of Uy. The CPCA transform on the minutiae spectra S(m, n)
is written as

Scpea = U3S, (5.7)

with Scpca the Mcpca X N data matrix with reduced dimensions. After the CPCA
feature reduction, the relation of the energy retainment rate Fcpca and Mcpca is
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Mcpca

Z Sz(n,n)

Ecpca(Mcpca) = ";[1—, 1 < Mcpoa < M, (5.8)
Z SZ(nan)

n=1

and the retained dimensionality at a target energy retainment rate Ecpca

Mcpca(Ecpea) = arg  min 71;117 — Ecpeal- (5.9)
1<M<M
Z SZ(nv n)
n=1

The CPCA transform is illustrated in Figures 5.6(a) and 5.6(b). We can see that
after the CPCA transform, the main energy of the original minutiae spectrum S is
concentrated in the top lines of Scpca. By only retaining the top Mcpca lines,
we perform the CPCA feature reduction, with a reduction rate Rcpca = (M —
Mcpcoa)/M. Because the rotation operator commutes with column transformation,
the minutiae spectrum Scpca remains periodic on the horizontal axis after the CPCA
transform.

5.2.3.2 Line-DFT feature reduction (LDFT)

The CPCA feature reduction method reduces the minutiae spectrum feature S in the
vertical direction. In this section, we will introduce the Line-DFT feature reduction
(LDFT) method, which will reduce the feature in the horizontal direction. This
method is based on the fact that the minutiae spectrum S is periodic on the horizontal
axis. Therefore, LDFT can be applied both independently and in combination with
the CPCA.

We denote each line of the minutiae spectrum S as a line feature vector gy, thus
S = (1, .-, yar)T. Because each line y,,[n], (m = 1,..., M) is a periodic discrete-time
signal, by performing DFT (implemented as a FFT) on each y,,[n], we can obtain
Setorr = (Y1[K], ..., Y [k])T, SLorr € CM | which is an exact representation of S.

The LDFT representation is illustrated in Figures 5.6(b) and 5.6(c). We can see that
after the LDFT representation, the main energy is concentrated in the low frequency
part (the middle columns). Therefore, for each line of the LDFT representation
SLprT, we only retain the Fourier components with a certain percentage of energy
(for example, 80%) in the lower frequency part. By reducing the number of Fourier
components, we implement the LDFT feature reduction. For each line m, the relation
of the energy retainment rate Epppr after the LDFT feature reduction and Nyppr
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(c)

Fig. 5.6: Ilustration of the CPCA transform and the LDFT representation. (a) the complex
spectral minutiae; (b) the minutiae spectrum after the CPCA transform; (c) the magnitude
of the LDFT representation of (b).
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(which indicates that only the Nyppr Fourier components from the low frequency
part are retained) is

k=0
N/2

> Y (k)?
k=0

N
Erprr(Niprr;m) = , 1 < Npppr < ) +1, (5.10)

and the retained dimensionality at a target energy retainment rate Erprr

N-1
2
Y (K)]
NLDFT (ELDFT; m) = arg Nmin ];\/:(2)7 - ELDFT . (511)
1<N<N/2+1 9
[Yn (K)]
k=0

As we mentioned in Section 5.2.2.5, the rotation of the fingerprint becomes the cir-
cular shift of the minutiae spectrum along the horizontal axis in the space domain.
To test different fingerprint rotations (see Section 5.2.2.5) after applying the LDFT
representation, we will implement the shift operation in the frequency domain ac-
cording to the shift property of the discrete Fourier transform. Thus, the Line-DFT
transformation of T'(m,n — n.s) in Equation (5.5) becomes

T(m,n—nes) = (y1(n — nes)y oo yr(n — ncs))T

LDFT exp(—j%”kncs)(yl(k), o Yar (k)T (5.12)

The DFT is orthnormal, thus it preserves inner products. Consider two discrete-
time, periodic signals fi[n] and fa[n], fi[n], f2[n] € RY, with period N (N is an even
number), because of the symmetry properties of the DFT for real-valued signals, the
correlation of f1[n] and f2[n] becomes

N—-1 1
filnlf51n] = 5 (A110)As[0]

n=0

+2 3 (AR Aalk] + B Bafk) + Au [ 4o 2). (5.13)
k=1

where * denotes the complex conjugate, it denotes the real part, A4;[k] and B;[k] are
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the real and the imaginary part of the Fourier coefficients.

Equation (5.13) shows that we can generate two one dimensional real-valued feature
vectors v7 and v from the Fourier components, that are,

oL (4 . Ny
Uy = \/N (Az[o]vﬁAz[l]a“'?\/éAz[Q 1]aAz[2]a
ﬁBi[l],...,ﬁBi[g —1]> Li=1,2. (5.14)

The correlation of v; and vy is exactly the same as the correlation of the real-
valued signals fi[n] and fa[n]. Thus, we can continue using the correlation-based
spectral minutiae matching algorithm. In the LDFT feature reduction, only the
Nrprr (Nuprr < % + 1) Fourier components from the low frequency part are re-
tained. For the matching algorithm presented in Section 5.2.2.5, we denote v, and
V¢ n., as the reduced features of R(m,n) and T'(m, n—n.s) respectively, then Equation
(5.5) becomes

1
(R,T) —
S max{ E UrUt o, b, —15 < mnes < 15. (5.15)

Nes

5.2.4 Experiments
5.2.4.1 Experimental settings

The proposed algorithms have been evaluated on MCYT [46] and FVC2002-DB2 [48]
fingerprint databases. The fingerprint data that we used from MCYT are obtained
from 145 individuals (person ID from 0000 to 0144 and finger ID 0) and each individual
contributes 12 samples. We use samples from person ID 0100 to 0144 for the CPCA
and LDFT training (totally 540 fingerprints) and samples from person ID 0000 to 0099
for test (totally 1200 fingerprints). We also tested our algorithms on the FV(C2002-
DB2 because it is a public-domain fingerprint database. Compared with MCYT, the
fingerprints in FVC2002 have lower quality and bigger displacements. For the FVC
databases, we apply the same experimental protocol as in the FVC competition: the
samples from finger ID 101 to 110 for the CPCA and LDFT training (totally 40
fingerprints) and samples from person ID 1 to 100 for test (totally 400 fingerprints)*.
The minutiae sets were obtained by the VeriFinger minutiae extractor [11]5.

4We propose to use our algorithm in a high security scenario. In FV(C2002 databases, samples
3, 4, 5 and 6 were obtained by requesting the biometric data subject to provide fingerprints with
exaggerated displacement and rotation. In a high security scenario where the biometric data subject
is aware that cooperation is crucial for security reasons, he will be cooperative. Therefore, only
samples 1, 2, 7 and 8 are chosen. To deal with the large rotations, an absolute pre-alignment based
on core and its direction can be applied.

5VeriFinger Extractor Version 5.0.2.0 is used.
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Table 5.1: Parameters of CPCA and LDFT (MCYT database).

Methods | SML | SMO | SMC |

Ecpca 83% 90% 84.7%
Reduction | 78.1% | 78.1% | 75%
FipFT 99% 99% 75%
Reduction | 67.8% | 72.8% | 58.3%
FErotal 82.2% | 89.1% | 63.5%
Reduction | 92.9% | 94.0% | 89.6%

Table 5.2: Parameters of CPCA and LDFT (FVC2002-DB2 database).

Methods | SML | SMO | SMC |

Ecpca 75% 92% 66.2%
Reduction | 75% 75% 75%
FipFT 97% 98% 70%
Reduction | 68.1% | 72.5% | 51.1%
FErotal 72.8% | 90.2% | 46.3%
Reduction | 92.0% | 93.1% | 81.5%

We test our algorithm in a verification setting. For matching genuine pairs, we used
all the possible combinations. For matching imposter pairs, we chose the first sample
from each identity. For the parameters oy, 00 and oc in Equations (5.2), (5.3) and
(5.4), we chose o = 0 for SML and SMC (in this case, no multiplication with Gaussian
in the frequency domain) and o = 4.24 for SMO (the explanation of parameter settings
can be found in [34]). In our experiment, we also use the core as a reference point to
assist the verification, following the procedure in [34]°.

5.2.4.2 Results

We test the SML, SMO and SMC representations in the two databases. We present
the results in both with and without CPCA and LDFT cases to evaluate the perfor-
mances of the feature reduction algorithms. During feature reduction, the selection
of the energy retainment rates Ecpca and Epppr are important for the performance.
When Ecpca and Erppr are chosen, we can calculate Mcpca and Npppr., using
the fingerprints in the training sets, according to Equations (5.9) and (5.11).

The feature reduction parameters are shown in Tables 5.1 and 5.2. We can see that
regarding LDFT, SMC has lower reduction rates and energy retainment compared
with SML and SMO. The reason is that SMC samples a 27 range in the horizon-
tal direction, while SML and SMO a range of m. Therefore, the horizontal feature

6In [34], for each fingerprint, maximum two cores or/and two deltas were used to improve the
performance. In this paper, only the upper core is used.
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Fig. 5.8: ROC curves (FVC2002-DB2 database).
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Table 5.3: Results after CPCA and LDFT (MCYT database).

Methods | EER | GAR @ FAR=0.1% |
SML 0.67% 98.8%
SMO 0.71% 98.6%
SMC 0.16% 99.8%
Fusion SML and SMC | 0.06% 99.9%

Table 5.4: Results after CPCA and LDFT (FVC2002-DB2 database).

Methods [ EER | GAR @ FAR=0.1% |
SML 5.1% 88.7%
SMO 4.51% 86.6%
SMC 3.05% 94.1%
Fusion SML and SMC | 2.48% 95.6%

reduction rates for SMC are lower.

The performances of SML, SMO, SMC and the feature reduction results are shown
in Tables 5.3 and 5.4 and the ROC curves are in Figures 5.7 and 5.8. From the
ROC curves, we can see that there is no noticeable performance degradation after
the CPCA and LDFT feature reductions. By using both methods, we can achieve a
template size reduction around 90%.

From Tables 5.3 and 5.4, we can see that the recognition rates of SMC have substantial
improvements compared with SML and SMO (the improvement factors range from
1.5 to 4.4 in the EERs). It is understandable that SMC outperformed SML because
SMC incorporates the minutiae orientation information. As for SMO, we explained
perviously that in the SMO representation, the critical information of minutiae ori-
entations is in the high frequency region, where also contains more noise. While with
SMC, this critical information is spread over the entire spectrum. This explains how
the SMC overcomes the drawback of the SMO technique. A preliminary attempt of
SML and SMC fusion (considering the recognition performances of SML and SMC,
a score level sum-rule fusion with weights 1:2 has been applied) is also applied and
results in some clear improvements in accuracy.

Without feature reductions, we can implement 8,000 comparisons per second using
optimized C language programming on a PC with Intel Pentium D processor 2.80 GHz
and 1 GB of RAM. After applying CPCA and LDFT, we can implement 125,000 com-
parisons (the speed is more than 15 times faster) under the same setting. We also
tested the VeriFinger matcher, a fast commercial minutiae-based matcher, using the
same PC setting and the matching speed is 8,000 comparisons per second. Our match-
ing speed will be slowed down by incorporating core information (reduces 2 times)
and fusion of SML and SMC (reduces 2 times). After including these factors, our
spectral minutiae matching still has speed advantages compared with most existing
minutiae-based algorithms.
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5.2.5 Conclusions and future work

Minutiae-based matching is the most widely used technique in fingerprint recognition
systems. However, the low matching speed is limiting their application. At the same
time, the increasing security and privacy concerns make minutiae template protection
one of the most crucial tasks. The spectral minutiae representation has coped with
the above issues.

In this paper, we present the complex spectral minutiae representation and the CPCA
and LDFT feature reduction algorithms. These new techniques enhance the recogni-
tion accuracy and increase the matching speed as well, thus broaden the application
of the spectral minutiae representation algorithm. In addition, our other preliminary
research showed that we can further improve accuracy about 20% to 70% by applying
minutiae quality data and minutiae subsets [57], [58]. We will continue exploring the
potential of increasing recognition accuracy.

Furthermore, in order to be able to apply the spectral minutiae representation with a
template protection scheme, for example based on a fuzzy extractor [53], the next step
would be to extract bits that are stable for the genuine user and completely random
for an arbitrary user. A fixed-length binary representation also has other advantages
such as the small template storage and high matching speed. This will also be our
future work.

5.3 Chapter Conclusions

In this chapter, we proposed the Complex Spectral Minutiae Representation (SMC),
a new version of the spectral minutiae representations. Compared with SMO, SMC
improves the recognition performance significantly by incorporating the minutiae ori-
entation in a different way. In this chapter, the CPCA and LDFT feature reduction
algorithms that introduced in Chapter 4 are also applied to SMC.

Up to now, we have already presented three spectral minutiae representation methods:
SML, SMO and SMC. They share the same basic principle. SMC showed the best
recognition performance and it is recommended for the application of the spectral
minutiae representations. In Chapter 6, the binary representations will also be mainly
investigated for the SMC features.

Table 5.5: The contributions of Chapter 5 and their achieved targets.

Contribution(s) | Target(s)
SMC Target I: Fixed-length feature vector

Target II: Translation and rotation invariance

Target IV: High recognition performance
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With regard to the research question and the targets of this thesis that are formulated
in Section 1.3, this chapter addressed Target I, fixed-length feature vector, Target II,
translation and rotation invariance, and Target IV, high recognition performance.
Targets I and II are achieved by the basic principle of the spectral minutiae represen-
tation. Target IV is achieved by the SMC feature, which incorporating the minutiae
orientation in a more effective way that leads to a higher recognition performance.
The contributions of this chapter together with their achieved targets are summarized
in Table 5.5.



Chapter

Binary Representations of Spectral
Minutiae Features

6.1 Chapter Introduction

PURPOSE. The template protection schemes based on the helper data schemes re-
quire a fixed-length binary feature vector as input. In the previous chapters, we
introduced the spectral minutiae representation, which represents a fingerprint minu-
tiae set as a fixed-length real-valued feature vector. In this chapter, we will investigate
methods that quantize the real-valued spectral minutiae features into binary strings.
Furthermore, we will explore several biometric fusion algorithms to improve the recog-
nition performance of the spectral minutiae representation algorithm.

CONTENTS. Based on the complex spectral minutiae representation (SMC) intro-
duced in Chapter 5, we first propose two methods to quantize the real-valued spectral
minutiae features into binary strings: the Spectral Bits and the Phase Bits in Sec-
tion 6.2. The algorithms are evaluated on the FVC2002-DB2 database. Next, in Sec-
tion 6.3, we investigate the multi-sample fusion algorithms to improve the recognition
performance. Furthermore, in the same section, we also propose different schemes
to mask out unreliable bits. The algorithms are evaluated on the FVC2000-DB2
database. In the context of the system diagram, the content of this chapter and its
referred blocks are highlighted in Figure 6.1.

PUBLICATION(S). Section 6.2 has been published in [73] and Section 6.3 has been
published in [74].

A NOTE TO READERS. The readers can focus on the following subsections: (1) 6.2.4
introduces two spectral minutiae quantization methods, the Spectral Bits and the
Phase Bits; (2)based on the Spectral Bits algorithm, 6.3.3.3 explores different schemes
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Fig. 6.1: Block diagram of our designed system, highlighting the content of Chapter 6 and its
referred blocks.

to mask out unreliable bits; (3) 6.3.4 investigate the multi-sample fusion algorithms to
improve the recognition performance of the spectral minutiae representation. Subsec-
tions 6.2.2, 6.3.2.2 and 6.3.2.3 give the background that have already been introduced
in Chapter 5. The readers can skip these parts.

6.2 Binary Representations of Fingerprint Spectral
Minutiae Features

Abstract

A fixed-length binary representation of a fingerprint has the advantages of a fast oper-
ation and a small template storage. For many biometric template protection schemes,
a binary string is also required as input. The spectral minutiae representation is a
method to represent a minutiae set as a fixed-length real-valued feature vector. In
order to be able to apply the spectral minutiae representation with a template pro-
tection scheme, we introduce two novel methods to quantize the spectral minutiae
features into binary strings: Spectral Bits and Phase Bits. The experiments on the
FV(C2002 database show that the binary representations can even outperformed the
spectral minutiae real-valued features.

6.2.1 Introduction

Minutiae-based matching is the most widely used technique in fingerprint recognition
systems. However, the low matching speed is limiting its application. At the same
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Fig. 6.2: Illustration of the complex spectral minutiae representation procedure. (a) a finger-
print and its minutiae; (b) representation of minutiae points as complex valued continuous
functions; (c) the 2D Fourier spectrum of ‘b’ in a Cartesian coordinate and a polar sampling
grid; (d) the Fourier spectrum sampled on a polar grid.

time, increasing security and privacy concerns make minutiae template protection a
crucial task. The spectral minutiae representation is a method to represent a minutiae
set as a fixed-length feature vector, which is invariant to translation, and in which
rotation and scaling become translations, so that they can be easily compensated for.
These characteristics enable the combination of fingerprint recognition systems with
template protection schemes and allow for a fast minutiae-based matching as well.

In order to apply the spectral minutiae representation with a template protection
scheme, for example, based on a fuzzy extractor [53] or fuzzy commitment [33], we
need to quantize the spectral minutiae real-valued features into binary strings. A
fixed-length binary representation also has additional advantages such as small tem-
plate storage and high matching speed.

The main contributions of this paper are: we propose two novel quantization schemes
to convert the real-valued spectral minutiae features into binary strings: Spectral Bits
and Phase Bits. We also evaluate our algorithms on the FVC2002-DB2 database and
show that the two binary representations achieved very promising results.

In this paper, we will first present the complex spectral minutiae representation
(SMC), a new spectral minutiae representation method in Section 6.2.2. Next, in
Section 6.2.3, we will briefly review the Column-PCA and Line-DFT feature reduc-
tion algorithms, which can greatly compact the spectral minutiae features. Then, in
Section 6.2.4, we will introduce two novel methods to quantize the spectral minutiae
features into binary strings: Spectral Bits and Phase Bits. Finally, we will show the
experimental results in Section 6.2.5 and draw conclusions in Section 6.2.6.

6.2.2 Complex Spectral Minutiae Representation

The objective of the spectral minutiae representation is to represent a minutiae set
as a fixed-length feature vector, which is invariant to translation and rotation [34,71].
We assume that the scaling has already been compensated for on the level of the
minutiae sets. This is for instance possible if minutiae are presented in a standard
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like [43], which includes sensor resolution. In Figure 6.2, the procedure of the complex
spectral minutiae representation (SMC) is illustrated.

Assume a fingerprint with Z minutiae. First, we code the minutiae locations by
indicator functions, which are isotropic two-dimensional Gaussian functions in the
spatial domain. Then we incorporate the minutiae orientation by assigning each
Gaussian a complex amplitude /% i = 1...Z. In this way, we represent minutiae
points as complex valued continuous functions, the magnitude of which is shown in
Figure 6.2(b). In this representation, translation and rotation may exist, depending
on how the user has put his finger on the sensor.

Next, a two-dimensional continuous Fourier transform is performed and only the
Fourier magnitude is kept, illustrated in Figure 6.2(c). This representation is now
translation invariant according to the shift property of the continuous Fourier trans-
form. This representation can be computed analytically,

Mc(wx,wy;aé) =

w +wy
exp < ) Zexp jwxx; + wyyi) +365)] - (6.1)

with (z;,9;,6;) the location and orientation of the i-th minutia in the fingerprint
image, and (wy, wy; 0’%) are the spatial frequencies and the Gaussian parameter re-
spectively.

Finally, the Fourier spectrum is re-mapped onto a polar coordinate system, illustrated
in Figure 6.2(d). In the radial direction A, we use M = 128 samples between A} = 0.05
and A\, = 0.58. In the angular direction (3, we use N = 256 samples uniformly
distributed between S = 0 and § = 27. Since our target application is in a high
security scenario with reasonable good quality fingerprints, we choose o¢ = 0 for
the best performance. In this case, there is no multiplication with Gaussian in the
frequency domain. An analysis of the selection of the Gaussian parameter o can be
found in [34]. According to the rotation properties of the two-dimensional continuous
Fourier transform, now the rotation becomes translation along the new coordinate
axis.

Let R(m,n) and T'(m,n) be the two sampled minutiae spectra that are achieved from
the reference fingerprint and test fingerprint respectively. Both R(m,n) and T'(m,n)
are normalized to have zero mean and unit energy. We use the two-dimensional
correlation coefficient between R and T' as a measure of their similarity.

In practice, the input fingerprint images are rotated. Therefore, we need to test a
few rotations, which become the circular shifts in the horizontal direction. We denote
T(m,n — j) as a circularly shifted version of T'(m,n) and the final matching score
between R and T is,
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~15< j < 15. (6.2)

6.2.3 Feature Reduction

The spectral minutiae feature is a 32,768-dimensional real-valued feature vector. The
large dimensionality of the spectral minutiae feature can cause three problems. First,
the template storage requirement is very high. Second, the high dimensionality leads
to a computational burden and the matching speed will be limited. Third, the high
dimensionality can lead to a small sample size problem [68]. In order to cope with
these problems, we will apply two feature reduction methods that are introduced
in [67]: the Column Principal Component Analysis (CPCA) and the Line Discrete
Fourier Transform (LDFT) feature reduction algorithms, which can be applied in
conjunction.

The idea of Column PCA (CPCA) is applying the well known Principal Component
Analysis technique to the SMC columns. PCA has two functions: it decorrelates fea-
tures and concentrates power. The CPCA representation is shown in Figure 6.3(b).
We can see that after CPCA, the power is concentrated in the upper lines. The
features in the lower parts are close to zero, so we can remove them from the repre-
sentation.

After the CPCA feature reduction, the minutiae spectrum remains periodic on the
horizontal axis. Therefore, applying Discrete Fourier Transform to each line generates
an exact representation. From Figure 6.3(c), we can see that the Fourier coefficients
concentrate power in the low frequency part. Therefore, we can achieve feature re-
duction by removing the Fourier coefficients in the higher frequency part. In this
paper, we improved the LDFT feature reduction algorithm represented in [67]. In our
previous work [67], we kept the energy in each line of the spectral minutiae feature
constant when reducing the Fourier coefficients. However, since the energy of each
line is probably unevenly distributed, see Figure 6.3(c), this may not be the most effi-
cient way to perform feature reduction. In this paper, we keep a fixed-length Fourier
coefficients with a maximum overall energy retainment. We gain this information
in the training procedure. In this way, we can increase the feature reduction rate
from 51% to 78% while keeping a similar performance (we will show the details in
Section 2.2.4).

6.2.4 Quantization

In this section, we will introduce two quantization methods: Spectral Bits, which is
applied in conjunction with the CPCA feature reduction, and Phase Bits, which is
applied in conjunction with the LDFT feature reduction.
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(c)

Fig. 6.3: Illustration of the CPCA transform and the LDFT representation. (a) the SMC
feature; (b) the minutiae spectrum after the CPCA transform; (c) the magnitude of the
LDFT representation of (b).
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(b)

Fig. 6.4: Example of Spectral Bits (SMC spectra after CPCA). (a) the Sign Bit; (b) the
Mask Bit.

6.2.4.1 Spectral Bits

The Spectral Bits quantization is applied to the real-valued features after the CPCA
feature reduction. First, each real-valued feature is quantized as one bit (1 if the
feature is greater than zero and 0 otherwise, we call it sign bit), shown in Figure 6.4(a).
Second, since the quantization boundary is zero, and the features close to zero are
unstable and likely to flip, they may cause errors. Therefore, we will mask out the
features of which the absolute values are below a certain threshold. For the best
recognition performance, we set the threshold to 0.8 after normalizing the spectra
to have unit energy. We found this parameter empirically by testing thresholds on
different fingerprint databases. The resulting mask bit is shown in Figure 6.4(b).

6.2.4.2 Phase Bits

The Phase Bits quantization is applied to the complex-valued features after the LDFT
feature reduction. Each complex component is quantized as 2 bits and the quanti-
zation scheme is shown in Figure 6.5. The sign bit and the mask bit generation is
similar as the procedure in the Spectral Bits quantization, shown in Figure 6.6. We
set the mask threshold to 1.2 empirically after normalizing the spectra to have unit
energy.
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Fig. 6.5: Quantization scheme.

(b)

Fig. 6.6: Example of Phase Bits (SMC spectra after LDFT). (a) the Sign Bit; (b) the Mask
Bit.
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Table 6.1: Results.

Methods | EER | FRRQFAR0.1%
1. Real features 3.2% 6.1%
2. Spectral Bits 3.2% 5.9%
3. Phase Bits 3.8% 6.3%
4. Fusion of (2) and (3) | 3.0% 5.4%

6.2.4.3 Fractional Hamming Distance

After generating sign bit and mask bit vectors, we can compute a Fractional Hamming
distance (FHD) as a measure of the dissimilarity between two fingerprints spectra
R(m,n) and T'(m,n), whose sign bit vectors are denoted as {codeR, codeT} and
mask bit vectors as {maskR, maskT},

codeR ® codeT) N maskR N maskT]|

[I(
HD =
[|maskR N maskT||

(6.3)

6.2.5 Results

The proposed algorithms have been evaluated on the FVC2002-DB2 [48] fingerprint
database. We apply the same experimental protocol as in the FVC competition: the
samples from finger ID 101 to 110 for the CPCA and LDFT training and samples
from person ID 1 to 100 for test. We propose to use our algorithm in a high secu-
rity scenario. In the FVC2002-DB2 databases, samples 3, 4, 5 and 6 were obtained
by requesting the biometric data subject to provide fingerprints with exaggerated
displacement and rotation. In a high security scenario where the biometric data sub-
ject is aware that cooperation is crucial for security reasons, he will be cooperative.
Therefore, we chose samples 1, 2, 7 and 8 for a more realistic evaluation. To deal
with the large rotations, an absolute pre-alignment based on core and its direction
can be applied. We obtain the minutiae sets using the VeriFinger minutiae extrac-
tor [11](VeriFinger Extractor Version 5.0.2.0 is used).

We test our algorithm in a verification setting. For matching genuine pairs, we used
all the possible combinations. For matching imposter pairs, we chose the first sample
from each identity. Therefore, we have totally 600 genuine scores and 4950 imposter
scores.

In our experiment, we also use the core as a reference point to assist the verification,
following the procedure in [34] (for each fingerprint, maximum two cores or/and two
deltas were used to improve the performance in [34], while in this paper, only the
upper core is used).
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Fig. 6.7: ROC curves.

We test both the Spectral Bits and the Phase Bits results. For the CPCA feature
reduction, we keep the top 35 lines, with a feature reduction rate of 73%. Therefore,
we generate 8960 bits for the Spectral Bits string, among which we mask out about
40%. For the LDFT feature reduction, we keep the first 1000 components with largest
magnitudes, with a feature reduction rate of 78%. Thus, we generate 2000 bits for
the Phase Bits string, among which we mask out about 45%. For the LDFT feature
reduction, it should be noted that if we apply the LDFT feature reduction on SMC
features using the method in [67], we can only achieve a feature reduction rate of 51%
for the similar performance.

For comparison, we also present the results of real-valued features (before quantiza-
tion). To improve the binary results, we also tried the fusion of the Spectral Bits and
the Phase Bits (a score level sum-rule fusion is applied). The results are shown in
Tables 6.1 and the ROC curves are shown in Figures 6.7. From the results, we can
see that both the Spectral Bits and the Phase Bits hardly degrade the performance
compared with the real-valued features. The Spectral Bits performs better than the
Phase Bits. The fusion of these two quantization schemes gives the best performance,
which is also outperformed the spectral minutiae real-valued features.

6.2.6 Discussion and Conclusion

In this paper, we introduce two methods to extract bits from the spectral minutiae
features: the Spectral Bits and the Phase Bits. Both quantization schemes show
promising results. These two methods are based on the spectral minutiae features
after the CPCA and LDFT feature reduction, which has already decreased the com-
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putational complexity for more than 10 times [67]. The fixed-length binary representa-
tions proposed in this paper further compact the template and increase the matching
speed.

To apply the spectral minutiae representation with a template protection scheme, for
example, based on fuzzy commitment [33], an error correcting step is needed. Erasure
decoding can handle the masking of bits. Furthermore, to enhance the recognition ac-
curacy, we can use multi-sample enrolment to improve the biometric template quality.
Investigating the possible error correcting codes and multi-sample enrolment schemes
will be our future work.

6.3 Binary Spectral Minutiae Representation with
Multi-Sample Fusion For Fingerprint Recogni-
tion

Abstract

Biometric fusion is the approach to improve the biometric system performance by
combining multiple sources of biometric information. The binary spectral minutiae
representation is a method to represent a fingerprint minutiae set as a fixed-length
binary string. This binary representation has the advantages of a fast operation and
a small template storage. It also enables the combination of a biometric system with
template protection schemes that require a fixed-length feature vector as input. In
this paper, based on the spectral minutiae representation algorithm, we investigate
the multi-sample fusion algorithms at the feature-, score-, and decision-level respec-
tively. Furthermore, we propose different schemes to mask out unreliable bits. The
algorithms are evaluated on the FVC2000-DB2 database and showed promising re-
sults.

6.3.1 Introduction

Recognition of individuals by means of biometric characteristics is gaining importance
due to the high security and user convenience. Among various biometric character-
istics, such as face, signature and voice, fingerprint has one of the highest levels
of distinctiveness and performance [1] and it is the most commonly used biometric
modality. Most fingerprint recognition systems are based on the use of a minutiae set.
However, the low comparison (or matching) speed is limiting its application to search
large databases. At the same time, the increasing privacy concerns make minutiae
template protection a crucial task. The spectral minutiae representation is a method
to represent a minutiae set as a fixed-length feature vector, which is invariant to
translation, and in which rotation and scaling become translations, so that they can
be easily compensated for [34,71,73]. These characteristics enable the combination



134 Chapter 6. Binary Representations of Spectral Minutiae Features

of fingerprint recognition systems with template protection schemes and allow for a
fast minutiae-based matching as well.

In order to apply the spectral minutiae representation with a template protection
scheme based on fuzzy commitment and helper data schemes, such as [33] and [5],
we need to quantize the real-valued spectral minutiae features into binary strings.
A fixed-length binary representation also has additional advantages such as small
template storage and high matching speed. Based on the complex spectral minutiae
representation (SMC) [71], the Spectral Bits binary spectral minutiae representation
was proposed in [73] and showed promising results. Since the recognition performance
is the most important factor for a biometric system, in this paper, we will investigate
methods to improve the recognition performance by fusing multiple spectral minutiae
representations.

Biometric fusion, also known as multibiometrics, is the approach to improve the bio-
metric system performance by combining multiple sources of biometric information.
Ross et al. [50] describe five scenarios that are possible to obtain multiple sources of
information: (1) Multi-sensor systems, where the information from a single biometric
characteristic is obtained from different sensors; (2) Multi-algorithm systems, where
the same biometric data is processed using different algorithms; (3) Multi-instance
systems, where multiple units of the same biometric characteristic (for example, the
left and right index fingers) are combined; (4) Multi-sample systems, where a single
sensor is used to acquire multiple impressions of the same biometric characteristic;
(5) Multi-modal system, where different biometric characteristics (such as iris and
fingerprint) from the same person are combined. Considering the cost effectiveness
and user convenience, scenarios (1)(3)(5) may not be preferred. Scenario (2) is a
popular cost-effective way to improve the biometric recognition performance. Prab-
hakar and Jain tried several attempts of combining multiple classifiers, and concluded
that the improvement in recognition performance is closely related to the indepen-
dence among various classifiers [75]. In this paper, we focus on the spectral minutiae
algorithm and we will not involve other classifiers in this paper (for instance, a non-
minutiae based classifier). Therefore, we will investigate scenario (4), fusing multiple
enrollment samples, to improve the recognition performance.

Based on the difference in the level of available information, fusion strategies can be
applied at image-level, feature-level, score-level and decision-level [1,50]. In this paper,
we focus on the procedures after the fingerprint minutiae extraction. Therefore, we
will discuss the fusion strategies at feature-, score- and decision-level, respectively.

The main contributions of this paper are: (1) based on the method presented in [57],
the minutiae quality data are incorporated to enhance the Complex Spectral Minutiae
Representation (SMC) performance; (2) we investigate the multiple enrollment sam-
ples fusion at the feature-, score-, and decision-level respectively; (3) we investigate
and evaluate several masking schemes, and discuss their application in context with
template protection and error correction schemes.

In this paper, we will first present the minutiae quality incorporated complex spectral
minutiae representation together with the Column-PCA feature reduction algorithm
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Fig. 6.8: Illustration of the complex spectral minutiae representation procedure. (a) a finger-
print and its minutiae; (b) representation of minutiae points as complex valued continuous
functions; (c) the 2D Fourier spectrum of ‘b’ in a Cartesian coordinate and a polar sampling
grid; (d) the Fourier spectrum sampled on a polar grid.

in Section 6.3.2. Next, in Section 6.3.3, we will briefly review the Spectral Bits quan-
tization method, and propose several masks schemes. Then, in Section 6.3.4, we will
discuss several methods to implement multi-sample fusions. Finally, we will show the
experimental results in Section 6.3.5 and draw conclusions in Section 6.3.7.

6.3.2 Complex Spectral Minutiae Representation

6.3.2.1 Minutiae Quality Incorporated Complex Spectral Minutiae Rep-
resentation

The objective of the spectral minutiae representation is to represent a minutiae set as
a fixed-length feature vector, which is invariant to translation and rotation [34]. We
assume that the scaling has already been compensated for on the level of the minutiae
sets. This is for instance possible if minutiae are presented in a standard like [43],
which includes sensor resolution. In Figure 6.8, the procedure of the complex spectral
minutiae representation (SMC) is illustrated.

Assume a fingerprint with Z minutiae. First, we code the minutiae locations by indi-
cator functions, which are isotropic two-dimensional Gaussian kernels in the spatial
domain. Then we incorporate the minutiae orientation by assigning each Gaussian
a complex amplitude €% i = 1,...,Z. In this way, we represent minutiae points
as complex valued continuous functions, the magnitude of which is shown in Fig-
ure 6.8(b). In this representation, translation and rotation may exist, depending on
how the user has put his finger on the sensor.

Next, a two-dimensional continuous Fourier transform is performed and only the
Fourier magnitude is kept, illustrated in Figure 6.8(c). This representation is now
translation invariant according to the shift property of the continuous Fourier trans-
form. In addition, we incorporate the minutiae quality data as presented in [57] into
SMC. This representation can be computed analytically,
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Mc(wx,wy;aé) = o _2

w +w
exp ( ) Z exp(—j(wxz; + wyyi) +j0;)| - (6.4)

with (z;,yi,0;,w;) the location, orientation and quality of the i-th minutia in the
fingerprint, and (wy,wy;cd) are the frequencies and the parameters of the Gaussian
kernel function respectively.

Finally, the Fourier spectrum is re-mapped onto a polar coordinate system, illustrated
in Figure 6.8(d). In the radial direction A\, we use M = 128 samples between A; = 0.05
and A, = 0.58. In the angular direction 3, we use N = 256 samples uniformly
distributed between S = 0 and § = 27. Since our target application is in a high
security scenario with reasonable good quality fingerprints, we choose oc = 0 for
the best good performance. In this case, there is no multiplication with a Gaussian
in the frequency domain (an analysis of the selection of the Gaussian parameter o
can be found in [34]). According to the rotation properties of the two-dimensional
continuous Fourier transform, now the rotation becomes translation along the new
coordinate axis.

6.3.2.2 Spectral Minutiae Matching

Let R(m,n) and T(m,n) be the two sampled minutiae spectra, respectively, achieved
from the reference fingerprint and test fingerprint. Both R(m,n) and T'(m,n) are
normalized to have zero mean and unit energy. We use the two-dimensional correlation
coefficient between R and T' as a measure of their similarity.

In practice, the input fingerprint images are rotated. Therefore, we need to test a
few rotations, which become the circular shifts in the horizontal direction. We denote
T(m,n—j) as a circularly shifted version of T'(m, n), the final matching score between
R and T is,

U = max{ ZRmn (m,n—7)},

—15 < j < 15. (6.5)

6.3.2.3 Feature Reduction

The spectral minutiae feature is a 32,768-dimensional real-valued feature vector. This
large dimensionality of the spectral minutiae feature can cause three problems. First,
the template storage requirement is very high. Second, the high dimensionality leads
to a computational burden and the matching speed will be limited. Third, the high
dimensionality can lead to a small sample size problem [68]. In order to cope with
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(b)

Fig. 6.9: Illustration of the CPCA transform. (a) the SMC feature; (b) the minutiae spectrum
after the CPCA transform.

these problems, we will apply the Column Principal Component Analysis (CPCA)
feature reduction method introduced in [67].

The idea of CPCA is to apply the well known Principal Component Analysis (PCA)
technique to the SMC columns. PCA has two functions: it decorrelates features and
concentrates power. The CPCA representation is shown in Figure 6.9(b). We can see
that after CPCA, the power is concentrated in the upper lines. The features in the
lower parts are close to zero, so we can remove them from the representation. For the
CPCA feature reduction, we keep the top 40 lines, with a feature reduction rate of
69%.

6.3.3 Quantization and Masking
6.3.3.1 Spectral Bits

In this section, we will first review the quantization method Spectral Bits introduced
in [73]. The Spectral Bits quantization is applied to the real-valued features after
the CPCA feature reduction. First, each real-valued feature is quantized as one bit
(1 if the feature is greater than zero and 0 otherwise, we call it sign bit), shown in
Figure 6.10(a). Second, since the quantization boundary is zero, and the features
close to zero are unstable and likely to flip, they may cause errors. Therefore, we will
mask out the features of which the absolute values are below a certain threshold. For
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(b)

Fig. 6.10: Example of Spectral Bits (SMC spectra after CPCA). (a) the Sign Bit; (b) the
Mask Bit.

the best recognition performance, we set the threshold to 0.6 after normalizing the
spectra to have a standard deviation (STD) equal to 1. By testing different thresholds
on different fingerprint databases, we found out that this parameter can be chosen
empirically and it will not cause critical degradation of recognition performance. An
example of the resulting mask bit is shown in Figure 6.10(b).

6.3.3.2 Fractional Hamming Distance (FHD)

After generating sign bit and mask bit vectors, we can compute a Fractional Hamming
distance (FHD) [76] as a measure of the dissimilarity between two fingerprints spectra
R(m,n) and T(m,n), whose sign bit vectors are denoted {codeR, codeT} and whose
mask bit vectors are decoded {maskR, maskT},

[|(codeR ® codeT) N maskR N maskT||

FHD =
[|maskR N maskT||

6.3.3.3 FHD with Different Masks Schemes

As shown in Equation (6.6), we use the fractional Hamming Distance (FHD) as the
similarity measure between two binary strings. This is the same measure applied for
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iris recognition by Daugman [76]. For a biometric verification system, we call maskR
and maskT in Equation (6.6) the enrollment mask and verification mask respectively.

To combine a biometric system with template protection schemes based on fuzzy com-
mitment and helper data schemes, such as [33] and [5], an error correction scheme [77]
is needed to correct the bit errors. However, incorporating masks will introduce com-
plexity to the error correction scheme, since at the time of encoding, only the en-
rollment mask is known, not the verification mask. For this reason, Hao et al. did
not incorporate masks when applying template protection to iris recognition [78].
Bringer et al. proposed a method to enable masks by enhancing the fuzzy commit-
ment scheme [79]. In this method, the error correction decoding also need to correct
the masks errors.

Including masks in the similarity measurement can improve the recognition perfor-
mance. To include masks, and at the same time, not to complicate the error correc-
tion and template protection scheme, we would like to investigate different masking
schemes that can be easily incorporated to the error correction schemes.

In order to reach this target, we first impose several constraints on our masking
schemes: (1) in case that an enrollment mask is used, the verification mask will be
the same as the enrollment mask, and the number of masked components should be
fixed to avoid the error correction coding difficulties. (2) In case that a verification
mask will be used, we will not include enrollment mask. In this case, the verification
mask can be incorporated by using erasure decoding.

Before presenting the masking schemes, we would like to introduce two components
selection algorithms: Largest Components Selection (LCS) and Reliable Components
Selection (RCS).

Largest Components Selection (LCS). LCS is a straightforward method that has
been applied to the Spectral Bits mask selection. LCS will select the features with
the largest absolute values. The features that are not chosen will be masked out.

Reliable Components Selection (RCS). To implement RCS, we need to estimate
the within-class variance based on the multiple enrollment samples from the same
subject [5]. Assume we have Ng enrollment spectral minutiae representation samples,
Ri(m,n),..., RNy (m,n), pnn and o7, ,, are the mean and variance of each component
at location (m,n). Since the spectral minutiae features in the same row is uniformly
sampled (see Section 6.3.2), we assume that they have equal within-class variance.
In this way, we can make a more reliable estimation of the within-class variance per
line 02 by average o2 Finally, the reliability factor ¢, of each component is

m m,n*
calculated as

dm,n = |Mm,n|7 (67)

Om

and the components with largest g, , will be selected in the RCS scheme.
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Based on the constraints imposed on our masking schemes and the two components
selection methods LCS and RCS, we propose three mask schemes in this paper.

Scheme (I): Enrollment Mask only with Largest Components Selection (EM-LCS).
In the EM-LCS scheme, only the enrollment mask is applied. A fixed number of
components are chosen based on LCS.

Scheme (II): Enrollment Mask only with Reliable Components Selection (EM-RCS).
In the EM-RCS scheme, only the enrollment mask is applied. A fixed number of
components are chosen based on RCS.

Scheme (III): Verification Mask only with Largest Components Selection (VM-
LCS). In the VM-LCS scheme, only the verification mask is applied. A fixed number
of components are chosen based on LCS. Since the enrollment mask need to be stored
in the database as helper data in template protection based on the Helper Data
scheme, the information from the enrollment mask may cause sensitive information
leakage and lead to privacy risk. Using a verification-mask-only scheme can avoid this
risk.

6.3.4 Multi-Sample Fusion of the spectral minutiae represen-
tations

In this paper, we will investigate the strategies of fusing multiple fingerprint samples
(obtained from the same sensor) at three different levels: (1) feature-level; (2) score-
level; (3) decision-level, respectively. In Figure 6.11, we show the various processing
modules of the binary spectral minutiae fingerprint recognition system, together with
the stages where the feature-, score- and decision-level fusions can be performed. The
output after each processing modules are: (a) minutiae set; (b) real-valued complex
spectral minutiae representations; (c) the minutiae spectra after the CPCA feature
reduction; (d) the Spectral Bits representation; (e) comparison scores measured by
fractional Hamming Distance.

6.3.4.1 Fusion levels and their properties

For the fusion strategies at feature-, score- and decision-level, we summarize their
properties in Table 6.2.

Information available. The information contained at the feature-level is richer than
the one at the other two levels. In this sense, feature-level has the advantage.

Storage and speed requirement. When implementing score-level or decision-level
fusion, all the templates derived from the multiple enrollment samples need to be
stored in the database and compared with the test one during verification/identification.
Therefore, the storage requirement is high and comparison (or matching) speed is slow.
The feature-level fusion can be done in the enrollment stage and only a synthesized
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Fig. 6.11: The various processing modules of the binary spectral minutiae fingerprint recog-
nition system together with the stages where the feature-, score- and decision-level fusions
can be performed respectively. ME: Minutiae Extractor. SMC: Complex Spectral Minu-
tiae representation. FR: Feature Reduction. Q: Quantization. FHD: Fractional Hamming
Distance.

Table 6.2: A summary of fusion strategies at different information level

Properties Lol Feature Score Decision
Information available + +/— —
Storage + - —
Speed + - —
Ease of design — +/- +
Template protection + — +/-
Robustness to overfitting +/- + +
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template need to be stored in the database. Therefore, the storage requirement and
comparison speed will remain unchanged.

Ease of design. Compared with the feature-level fusion, the score-level and decision-
level fusion are easier to study and implement.

Template protection. As with the ‘Storage’ and ‘Speed’ properties, if multiple
enrollment templates need to be stored in the database, the template protection
procedure also need to be applied to each of the templates (including error correction
encoding/decoding), which will greatly reduce the speed. Moreover, because of the
limited error-correcting capability of error correction code, fusion at score-level with
template protection also needs to be implemented differently [80].

Robustness to overfitting. The complex spectral minutiae features are complicated
in relation to the amount of examples available for training the statistical model.
This overfitting problem may occur during the feature-level fusion. The score- and
decision-level fusions are more robust to the overfitting problem.

6.3.4.2 Feature-level fusion

During the Feature-level fusion, the features from multiple samples are combined to
produce a single enrollment template. This is also known as template consolidation [1].
As shown in Figure 6.11, the feature-level fusion can be performed at the modules
“Minutiae Extractor (ME)”, “Complex Spectral Minutiae representation (SMC)”,
“Feature Reduction (FR)”and “Quantization (Q)”. At each module, the amount
of information available is different (the information available decreases from left to
right in the figure). Fusing at minutiae feature level involves several steps such as
alignment and reliable minutiae selection. Several research works have been done on
this topic [81,82]. In this paper, we will focus on the fusion of the spectral minutiae
features. This can be done after the SMC, FR and Q modules. Considering the
information available, implementing fusion after the SMC or FR modules is preferable
over after the module Q. If we choose a linear operation for the feature-level fusion (for
example, an averaging operation), implementing this fusion after the module SMC or
FR is equivalent. In this paper, we will perform the spectral minutiae features fusion
after the CPCA feature reduction (module FR).

In the spectral minutiae representations, the translations between fingerprint samples
become invariant, while the rotations become the circular shifts in the horizontal
direction. Before the feature-level fusion, we need to first align the spectral minutiae
features to compensate the rotation differences. After the rotation alignment, we
average the aligned spectral minutiae features to generate the synthesized enrollment
(or reference) template.

Assume we have Ny enrollment spectral minutiae representation samples Ry, ..., Ryy
available for fusion, the procedure of our spectral minutiae feature-level fusion is as
follows.
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Step 1: Denote R;« as the enrollment sample with the largest similarity to all the
other samples, that is,

Ng
i* = arg max Z SR G =1 . Ng, (6.8)
Cok=t
(ki)
with SU%:f) calculated following Equation (6.5).

Step 2: Take R;+ as the reference, align all the other enrollment samples to R;+ by
trying out different circular shifts following Equation (6.5). The aligned samples are

denoted as Ry, ..., Ryyg.

Step 3: Generate the the synthesized enrollment template Rg by averaging El, ey R Ngs
that is,

Rs = — > R (6.9)

N
B

Finally, the synthesized enrollment template Rg will be stored in the database as the
reference template for verification/identification.

6.3.4.3 Score-level fusion

The score-level fusion is performed at the module ”Fractional Hamming Distance
(FHD)”, see Figure 6.11. At this module, the binary reference templates from multiple
enrollment samples are compared with the test binary template, and then multiple
comparison scores are fused. The commonly used score-level fusion techniques are
Sum Rule, Maz Rule and Min Rule [50]. In Section 6.3.5, we will present the score-
level fusion result based on the Max Rule'.

6.3.4.4 Decision-level fusion

The decision-level fusion is performed at the final decision making module, see Fig-
ure 6.11. The very straightforward decision-level fusion techniques are AND Rule,
OR Rule and Majority Voting [50]. The outliers in a fingerprint database can cause
false rejection. To reduce the recognition errors caused by the outliers, in this pa-
per, we show the performance of the decision-level fusion based on the OR Rule in
Section 6.3.52. It should be noted that the decision-level fusion based on the OR

IWe also tried other techniques such as the Sum Rule fusion. The Max Rule fusion gives best
results in our case.

2We also tried AND Rule and Majority Voting. The OR Rule fusion gives best results in our
case.
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Table 6.3: Permutation setting: samples used for multi-sample enrollment and single-sample
verification.

Permutation | Enrollment | Genuine Verification

P1 1,2,3.4 5,6,7.8
P2 1,3,5,7 2.4,6,8
P3 1,2,7.8 3,4,5,6
P4 1,5,6,7 2,348

Rule is equivalent as the score-level fusion based on the Max Rule and their recog-
nition performance is the same. Therefore, we will show one performance curve in
Section 6.3.5.

6.3.5 Results

The proposed algorithms have been evaluated on the FVC2000-DB2 [47] fingerprint
database. We apply the same experimental protocol as in the FVC competition: the
samples from finger ID 101 to 110 for the CPCA training and samples from person
ID 1 to 100 for test. Each identity contributes 8 samples. The minutiae sets including
the minutiae quality data are extracted by a proprietary method.

We test our algorithm in a verification setting. In the single-sample enrollment
case, for genuine comparisons, we used all the possible combinations. For imposter
comparisons, we chose the first sample from each identity. Therefore, we generate
100 x (g) = 2800 genuine comparisons and (130) = 4950 imposter comparisons in

total.

6.3.5.1 Results of Multi-Sample Fusions

To test different multi-sample fusion schemes proposed in Section 6.3.4, we set up a
multi-sample enrollment and single-sample verification system. We use the Fractional
Hamming Distance shown in Equation (6.6) as the classifier. For generating more test
cases, we implemented four permutations. In each permutation, Ng = 4 enrollment
samples are used for multi-sample fusions and the other four samples for genuine
verification. For imposter verification, we chose the first sample from each identity to
compare with the multiple enrollment samples (or the synthesized enrollment template
in the feature-level fusion case). The permutation setting is shown in Table 6.3. In
total, we will generate 100 x4 x4 = 1600 genuine comparisons and 100x 99 x4 = 39600
imposter comparisons.

For comparison, we also present the results of the single-enrollment scheme (both with
and without incorporating minutiae quality data). The ROC curves of each scheme
are shown in Figure 6.12. From the two single-enrollment results, we can see that
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Fig. 6.12: ROC curves of different multi-sample fusion schemes.

the recognition performance improved about 20% in terms of the equal error rate by
incorporating minutiae quality data. This improvement is consistent with the results
shown in [57], where the minutiae quality data are incorporated in two other spectral
minutiae representations. For the multi-sample fusion results, we can see that all the
three multi-sample fusion schemes received significant improvements compared with
the single-enrollment scheme. The OR Rule decision-level fusion and the Max Rule
score-level fusion are equivalent and their performances are shown with one curve.
They outperformed the feature-level fusion since they are more robust to outliers and
the overfitting problem.

6.3.6 Results obtained with different Quantization Masking
Schemes

The main reason to investigate the different masking schemes is for the integration
of template protection schemes. As we discussed in Section 6.3.4, the feature-level
fusion is most suitable for template protection schemes. In this paper, we evaluate
the different masking schemes combined with the feature-level fusion algorithm. The
results of four masking schemes are shown: 1. original masking schemes using both
enrollment and verification masks; 2. EM-LCS; 3. EM-RCS; 4. VM-LCS. The number
of masked out components are set as 5500 for EM-LCS and VM-LCS, and 5000 for
EM-RCS. The ROC curves of each scheme are shown in Figure 6.13 (the curve of
"Both masks” is the same as the ”Fusion at feature-level” curve in Figure 6.12). We
can see that the performance differences between the four schemes are not significant.
For the privacy concerns as we discussed in Section 6.3.3, we recommend the VM-LCS
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Fig. 6.13: ROC curves of different masking schemes.

scheme for template protection.

6.3.7 Discussion and Conclusion

In this paper, we investigated the multi-sample fusions of the spectral minutiae repre-
sentations. We also proposed different mask schemes applied to the similarity measure
of binary representations in context with template protection. Our main conclusions
are: (1) Multiple enrollment samples can be used to train a statistical model of the
biometric characteristics. By applying multi-sample fusions, we can obtain a more
accurate representation of the biometric characteristics and improve the recognition
accuracy. (2) The performance of the fusion at feature-level can be degraded due
to outliers and the overfitting problem and its recognition performance can be lower
than the one from score- or decision-level fusion. However, feature-level fusion has ad-
vantages on template storage requirement and comparison speed. It is also the most
suitable solution when incorporating template protection. (3) When using fractional
Hamming Distance, to incorporate template protection and error correction scheme,
we can apply one-mask schemes (enrollment- or verification-mask only), which showed
similar performances as the one using both masks. (4) To prevent the sensitive infor-
mation leakage, using the verification-mask-only scheme will be the best choice.

To apply the spectral minutiae representation with a template protection scheme
based on the Helper Data Scheme [53], an error correction scheme is needed. Further-
more, to enhance the recognition performance, we can incorporate other fingerprint
features such as singular points. Investigating the possible error correcting codes and
other methods to enhance recognition performance will be our future work.
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6.4 Chapter Conclusions

This chapter presented several methods to quantize the real-valued spectral minu-
tiae features into binary strings. In this chapter, we also applied several methods to
enhancement the performance of the spectral minutiae representation scheme, includ-
ing integrating minutiae quality data to the SMC feature, multi-sample fusion and
different schemes to mask out unreliable bits.

The main contributions of this chapter are the two quantization methods: the Spectral
Bits method, which quantizes the spectral minutiae features after the CPCA feature
reduction, and the Phase Bits method, which quantizes the features after the LDFT
feature reduction. The Spectral Bits representation consists of a long binary string,
of around 10,000 bits, while the Phase Bits representation consists of a shorter binary
string, of around 2,000 bits. Comparing the recognition performance of these two
methods, the Spectral Bits representation has the advantages. These two methods
can also be fused for a higher recognition performance.

Table 6.4: The contributions of Chapter 6 and their achieved targets.

Contribution(s) Target(s)

Spectral Bits Target III: Binarization

Phase Bits Target V: High comparison speed
Multi-Sample Fusion | Target IV: High recognition performance

With regard to the research question and the targets of this thesis that are formu-
lated in Section 1.3, this chapter addressed Target 111, binarization, Target IV, high
recognition performance and Target V, high comparison speed. By quantizing the
real-valued spectral minutiae features into binary strings, we can not only achieve a
binary input, which is required by the help data scheme, but also achieve a higher
comparison speed. Furthermore, Target IV, high recognition performance, is achieved
by multi-sample fusion. The contributions of this chapter together with their achieved
targets are summarized in Table 6.4.
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Chapter

FEvaluation and Evolution

Until now, we have introduced several spectral minutiae representation techniques in
Chapters 2-6. Since each of these chapters consists of one or more papers in their orig-
inal published format, with the progress of our research, some techniques presented
in the papers were evaluated on different fingerprint databases and/or using different
minutiae extractors. In order to have a clear comparison of each technique and to
make our progress explicit, we include this chapter to evaluate these techniques on the
same database, using the same minutiae extractor. For giving a clear presentation of
the progress of the spectral minutiae representation scheme, we select several relevant
techniques and their combinations for evaluation in this chapter.

7.1 Experimental settings

In this chapter, we evaluate different techniques on the FVC2000-DB2 [47] fingerprint
database. We apply the same experimental protocol as in the FVC competition: the
samples from finger ID 101 to 110 for the relevant training purpose and samples from
person ID 1 to 100 for test. Each identity contributes 8 samples. The minutiae sets
including the minutiae quality data are extracted by a proprietary method.

We test our algorithms in a verification setting. In the single-sample enrollment
case, for genuine comparisons, we used all the possible combinations. For imposter
comparisons, we chose the first sample from each identity. The experimental protocol
for single- and multi-sample enrolment is the same as in Chapter 6.

We divide the techniques to be evaluated into three categories: (i) basic spectral
minutiae representations, including SML (Ch. 2), SMO (Ch. 2) and SMC (Ch. 5); (ii)
enhancement techniques, including Enhancement by Quality (Ch. 3), Enhancement
by SP (Ch. 2) and Minutiae Subsets (Ch. 3); (iii) binary representations, including
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Spectral Bits (Ch. 6) and Multi-Sample Fusion (Ch. 6). It should be noted that we
will not present the performances of the feature reduction techniques CPCA (Ch. 4)
and LDFT (Ch. 4) in this chapter since their performances are equivalent to the ones
without feature reduction.

7.2 Results

7.2.1 Basic spectral minutiae representations

First, we will evaluate the performances of the three basic spectral minutiae represen-
tation methods: SML (Ch. 2), SMO (Ch. 2) and SMC (Ch. 5). We show the results
in Table 7.1 and the ROC curves are in Figure 7.1.

Table 7.1: Results of basic spectral minutiae representation methods.

[ Methods | EER | GAR @ FAR=0.1% |

SML 8.8% 74.3%
SMO 8.3% 71.0%
SMC 5.0% 88.2%

FVC2000-DB2 database
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Fig. 7.1: ROC curves (basic spectral minutiae representation methods).

As the performances shown in Chapter 5, SMC achieved the best results in this
evaluation. In terms of the equal error rate, SMC has a recognition performance that
is almost 2 times better than that of SML and SMO.
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7.2.2 Enhancement techniques

Section 7.2.1 shows that SMC outperformes SML and SMO. Therefore, we evaluate
the enhancement techniques on SMC features. We present the performances of En-
hancement by Quality (Ch. 3), Enhancement by SP (Ch. 2), Minutiae Subsets (Ch.
3) and their combinations. We also present the performances of SMC as baseline for
comparison. We show the results in Table 7.2 and the ROC curves are in Figure 7.2.

Table 7.2: Results of enhancement techniques (on SMC features).

[ Methods [ EER [ GAR @ FAR=0.1% |
SMC (baseline) 5.0% 88.2%
Enhancement by Quality 4.0% 90.6%
Enhancement by SP 3.8% 91.3%
Enhancement by SP + Quality | 3.1% 93.9%
Minutiae Subsets 3.3% 93.2%
Minutiae Subsets + Quality 2.8% 95.2%
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Fig. 7.2: ROC curves (enhancement techniques).

From the results, we can see that incorporating quality information gives an overall
improvement in the recognition performance. The improvements achieved by using SP
and minutiae subsets are comparable. By applying Enhancement by SP, the template
size and the comparison time will be doubled. By applying Minutiae Subsets, the
template size will be 4 times larger, and the comparison will be 16 times slower.
Considering the template size and comparison speed, Enhancement by SP is more
favorable for real time applications.
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7.2.3 Binary representations

A binary representation is required for combining a fingerprint recognition system
with template protection schemes based on the helper data scheme. Section 7.2.2
shows that Enhancement by Quality gives an overall improvement under different
conditions. Therefore, for evaluating binary representations, we use the SMC features
combining Enhancement by Quality as the baseline. In Chapter 6, we presented two
binary representations: Spectral Bits and Phase Bits. Since Spectral Bits obtains a
better performance, in this subsection, we evaluate different enhancement techniques
on Spectral Bits as binary representation performances. For different masking schemes
(Ch. 6), we choose ‘both masks’ since it gives the best recognition performance. Since
the degradations when using the other masking schemes are small, the performance
we show in this subsection will give a reasonable prediction of the performances of
binary representations with different masks.

Table 7.3: Results of binary representations (on SMC features combining Enhancement by
Quality).

| Methods | EER | GAR @ FAR=0.1% |
Spectral Bits (baseline) 4.4% 89.3%
Enhancement by SP 2.9% 93.7%
Minutiae Subsets 2.8% 95.0%
Multi-sample enrolment feature-level fusion | 1.1% 97.8%
Multi-sample enrolment decision-level fusion | 0.8% 98.5%
FVC2000-DB2 database (on SMC features combining Enhancement by Qualit
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Fig. 7.3: ROC curves (binary representations).

We also present the results of the following enhancement methods applied to Spectral
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Bits: Enhancement by SP (Ch. 2), Minutiae Subsets (Ch. 3), Multi-sample enrolment
feature-level fusion (Ch. 6) and Multi-sample enrolment decision-level fusion (Ch. 6).
We show the results in Table 7.3 and the ROC curves are in Figure 7.3.

The binary spectral minutiae representations show recognition performances that are
similar to those of the real-valued representations. At the same time, they greatly
compact the template size and increase the comparison speed. Applying multi-sample
enrolment fusion can improve the recognition performance significantly. It is recom-
mended for a high security system.

7.3 Chapter Conclusions

We showed how the performances of the spectral minutiae scheme improved as the
result of several enhancements. In fact, the initial performance in terms of the
equal error rate improved from 8.8% (SML) to 0.8% (quality enhanced SMC Spectral
Bits with Multi-sample enrolment decision-level fusion). The binary representations
greatly compact the template size, increase the comparison speed, and enable the
combination of minutiae-based fingerprint recognition system with template protec-
tion schemes based on the helper data scheme, without degrading the recognition
performance.
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Chapter

Conclusions and Recommendations

In order to conclude this thesis, we will first address the research question formulated
in Chapter 1 and summarize the contributions of this thesis. Furthermore, we will
present possible applications of our proposed algorithms and give future research
directions.

8.1 Conclusions

In Section 1.3, we formulated the research question of this thesis as:

How can we combine a minutiae-based fingerprint recognition system with
template protection based on the helper data scheme?

The spectral minutiae representation scheme proposed in this thesis provides a fea-
sible solution to our research question. The spectral minutiae representation and
its quantization scheme transform an unordered, variant-length minutiae set into a
fixed-length binary feature vector, which is required as an input to the helper data
scheme. The feature vector output of the spectral minutiae representation is also
translation and rotation invariant, which enables the comparison of minutiae sets in
an encrypted domain. Furthermore, the feature reduction methods and the quanti-
zation schemes proposed in this thesis compact the spectral minutiae template and
increase the comparison speed significantly.

In Section 1.3, we also specified five targets that had to be achieved in order to
answer the research question. All these five targets have been achieved in this thesis.
In Table 8.1, we list these targets and their solutions that are contributed by this
thesis.

In this thesis, three spectral minutiae representation methods have been proposed: the
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Table 8.1: Defined targets and solutions contributed by this thesis.

Target Solutions
Target L SML (Ch. 2)
Fixed-length feature vector SMO (Ch. 2)

SMC (Ch. 5)
Target II. SML (Ch. 2)
Translation and rotation invariance | SMO (Ch. 2)

SMC (Ch. 5)
Target I11. Spectral Bits (Ch. 6)
Binarization Phase Bits (Ch. 6)
Target IV. SM Fusion (Ch. 2)
High recognition performance Enhancement by SP (Ch. 2)

Enhancement by Quality (Ch. 3)
Minutiae Subsets (Ch. 3)

SMC (Ch. 5)

Multi-Sample Fusion (Ch. 6)
Target V. CPCA (Ch. 4)
High comparison speed LDFT (Ch. 4)

Spectral Bits (Ch. 6)
Phase Bits (Ch. 6)

location-based spectral minutiae representation (SML), the orientation-based spectral
minutiae representation (SMO) and the complex spectral minutiae representation
(SMC). SML encodes minutiae location information, while SMO and SMC encode
both minutiae location and orientation information. From the experiments shown in
this thesis, SMC achieved the best results. In terms of the equal error rate, SMC has
a recognition performance that is about 2-4 times better than that of SML and SMO.

Furthermore, this thesis provided five methods to enhance the recognition perfor-
mance: (1) SM Fusion; (2) Enhancement by using SP; (3) Enhancement by incor-
porating quality information; (4) Using Minutiae Subsets; (5) Multi-Sample Fusion.
Considering the effectiveness and feasibility of all these methods, we recommend to
apply methods (3) Enhancement by Quality, and (5) Multi-Sample Fusion, in real-life
situations. Method (1) can be applied to SMC and SML. However, the template
size will be doubled and the comparison speed will be slowed down. Method (2)
showed an improvement of around 20% in recognition performance. However, this
method relies on a reliable singular points detection, and it suffers from the same
disadvantages as method (1), that the template size increases and the comparison
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speed degrades. Method (4) is an effective way to cope with the limited overlap prob-
lem for applications in which only partial fingerprints are available. However, this
method also has disadvantages on the template size and the comparison speed. For
the target applications of this thesis that are described in Section 1.3.1, this method
is not recommended.

With regard to feature reduction, both CPCA and LDFT can effectively reduce the
feature dimensionality by 70%-80%, while maintaining the recognition performance.
For a high reduction rate, we recommend to apply both CPCA and LDFT in combi-
nation.

With regard to quantization, the Spectral Bits representation is recommended because
of its better recognition performance. This method quantizes the spectral minutiae
features to a binary string of around 10,000 bits. The Phase Bits representation
consists of a shorter binary string, of around 2,000 bits. In case that a shorter binary
string is preferred, the Phase Bits representation can be the choice. The Spectral Bits
and the Phase Bits can also be concatenated in order to achieve a higher recognition
performance.

8.2 Recommendations

8.2.1 Applications

The spectral minutiae representation scheme proposed in this thesis can be used for
the following applications:

e Template protection based on the helper data scheme.

This is the main target application of this thesis. The spectral minutiae repre-
sentation algorithm proposed in this thesis enables the combination of fingerprint
recognition with template protection based on the helper data schemes. In Fig-
ure 8.1, we show our designed system in a helper data scheme. The block ‘Spectral
Minutiae’ is our system. In this block, the quantization scheme (Spectral Bits or
Phase Bits) is also included.

When applying the helper data scheme, another important task is designing the
error correcting codes (ECCs). When designing the ECC for the spectral minutiae
binary outputs (Z and Z’ in Figure 8.1), we need to consider the characteristics of
these binary outputs, such as the error probability and binary string length. This
is one of the future research directions.

e Pre-selector.
Due to the fact that minutiae sets are unordered and the correspondence between
individual minutia in two minutiae sets is unknown before minutiae sets compar-
ison, it is difficult to find the geometric transformation (consisting of translation,
rotation, scaling, and optionally non-linear deformations) that optimally align the
two minutiae sets. For fingerprint identification systems with very large databases,
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Fig. 8.1: Diagram of applying our designed system ‘Spectral Minutiae’ for combining finger-
print recognition with template protection.

in which a fast comparison algorithm is necessary, most minutiae-based matching
algorithms will fail to meet the high speed requirements. The spectral minutiae al-
gorithm proposed in this thesis coped with the above disadvantages of the minutiae-
based matching algorithms, thus, it greatly increased the comparison speed. For a
large-scale Automated Fingerprint Identification System (AFIS), we might combine
good identification performance and speed by using our designed scheme, the ‘spec-
tral minutiae’, as a pre-selector (or pre-filter), see Figure 8.2. As a pre-selector, the
‘spectral minutiae’ scheme will find a number of best matches from a large amount
of templates in the database, and then use a very accurate minutiae comparison
for a good recognition performance.

N SM K minutiae
| templates templates
Minutiae Spectral K best N High accuracy
—> — ) N 4 I
extractor Minutiae | matches | minutiae matcher

(K<< N)

Fig. 8.2: Diagram of applying our designed system ‘Spectral Minutiae’ as a pre-selector.

As a pre-selector, the recognition performance in the area of high GAR is important.
For fingerprints with good quality, the spectral minutiae algorithm can be used as
pre-selector to speed up the minutiae sets comparison. However, the spectral minu-
tiae algorithm is not robust to the low quality fingerprints. The fingerprint outliers
will degrade the recognition performance, which limits the application of using the
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spectral minutiae scheme as pre-selector. The solutions to such problem are incor-
porating minutiae quality and applying multi-sample fusion. Further investigation
to make the spectral minutiae scheme more robust to fingerprint outliers is another
future research direction.

Besides the target applications mentioned above, the contributions of this thesis can
also be applied for other pattern recognition purposes. The basic principle of the
spectral minutiae representation can be applied for point pattern recognition. The
CPCA and LDFT methods can be applied to the patterns that have similar charac-
teristics as the spectral minutiae features, for example, the iris pattern, for the feature
reduction purpose.

8.2.2 Future research

In Section 8.2.1, we mentioned several possible applications of the spectral minutiae
scheme, together with some future research directions on “error correcting codes” and
“dealing with fingerprint outliers”. Future research on the spectral minutiae repre-
sentation can focus on:

e Poor quality fingerprints. Some research has shown that minutiae-based fin-
gerprint recognition algorithms are less robust to the image quality degradation
compared with image-based algorithms [64]. The spectral minutiae representation
algorithm proposed in this thesis is based on the minutiae feature. However, in
some applications, the quality of some fingerprints is so poor that even the experts
cannot reliably manually extract minutiae. In such cases, we need to look for solu-
tions based on the image-based features. The fusion of minutiae- and image-based
fingerprint comparison algorithms is a robust solution against poor quality finger-
prints and will have a better recognition performance.

e Limited overlap. In this thesis, we proposed the method “Using minutiae sub-
sets”to cope with the limited overlap problem. However, this method has the
disadvantages of increasing template size and degrading comparison speed. More-
over, it still needs to be optimized for real time applications. Further research
on this topic is very important, especially for the applications where only partial
fingerprints are available, e.g., forensic applications.

e Large rotations. The current spectral minutiae representation algorithm copes
with fingerprint rotations within a certain range by testing a set of rotation possi-
bilities. In case that a large rotation exists between two fingerprints, this rotation
compensation will be time consuming and it will also increase the false accep-
tance rate. We may combine the spectral minutiae representation algorithm with
rotation-invariant minutiae descriptors to solve this problem.

e Elastic distortion. When combining fingerprint recognition with template pro-
tection, the two fingerprints need to be compared in an encrypted domain. How
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to deal with elastic distortion in such cases is still unknown. Furthermore, for ap-
plications where big elastic distortions are likely to exist, e.g., forensic applications
where the fingerprints are obtained from the crime scenes, dealing with elastic dis-
tortions is a very important task to investigate.

e Binary representation. In this thesis, we introduced two binary representations:
the Spectral Bits and the Phase Bits. Both representations consist of a considerable
large number of bits with fairly high error probabilities. Further research can focus
on other possibilities of extracting a smaller number of more reliable bits. This will
be beneficial for the helper data scheme since it is easier to find a suitable ECC
with lower error correcting capability. Generating more reliable bits also opens the
possibility to combine the spectral minutiae representation algorithm with the key
generation scheme [53,83].
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Summary

The term biometrics refers to the technologies that measure and analyze human intrin-
sic physical (such as fingerprints, face, iris) or behavioral (such as signature, voice,
gait) characteristics for authenticating individuals. Recognition of individuals by
means of biometric characteristics is gaining importance because of several reasons:
first, unlike passwords, PIN codes or tokens, biometric identifiers cannot be forgotten
or lost, and they add user convenience since they are always at hand; second, a bio-
metric identifier is tightly linked to an individual, therefore, it cannot easily be forged
or shared.

Currently, fingerprint is the most commonly used biometric modality. Compared with
various biometric characteristics, such as face, signature and voice, the fingerprint
has high levels of distinctiveness, permanence and performance. At the same time
it has the advantages of both ease of use and low cost. Nowadays, many fingerprint
recognition systems are based on minutiae comparison. Minutiae are the endpoints
and bifurcations of fingerprint ridges. They are known to remain unchanged over an
individual’s lifetime and allow a very discriminative classification of fingerprints.

Nowadays, biometric technology is increasingly deployed in civil and commercial ap-
plications. The growing use of biometrics is raising security and privacy concerns.
Storing biometric data, known as biometric templates, in a database leads to several
privacy risks such as identity fraud and cross matching. A solution is to apply bio-
metric template protection techniques, which aim to make it impossible to recover the
biometric data from the templates.

The research question addressed in this thesis is how to combine fingerprint recog-
nition systems with template protection. Most fingerprint recognition systems are
based on the comparison of minutiae sets, which are unordered collection of minutiae
locations and orientations suffering from various deformations such as translation,
rotation and scaling. Many template protection systems, however, require an ordered
feature vector of fixed-length. The spectral minutiae representation introduced in
this thesis is a novel method that, indeed, represents a minutiae set as a fixed-length
feature vector, which is invariant to translation, and in which rotation and scaling
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become translations that can be easily compensated for. These characteristics enable
the combination of fingerprint recognition systems with template protection schemes
based on fuzzy commitment or helper data schemes.

In this thesis, three spectral minutiae representation methods have been proposed:
the location-based spectral minutiae representation (SML), the orientation-based spec-
tral minutiae representation (SMO) and the complex spectral minutiae representation
(SMC). SML encodes minutiae location information, while SMO and SMC encode
both minutiae location and orientation information. From the experiments shown in
this thesis, SMC achieved the best results. In terms of the equal error rate, SMC has
a recognition performance that is about 2-4 times better than that of SML and SMO.

Based on the spectral minutiae features, this thesis further presented contributions in
three research directions. First, this thesis recommends several ways to enhance the
recognition performance of SMC. Examples are the incorporation of minutiae quality
information and multi-sample fusion. Second, with regard to feature reduction, this
thesis introduced two feature reduction methods, Column-PCA (CPCA) and Line-
DFT (LDFT), which can effectively reduce the feature dimensionality by 70%-80%,
while maintaining the recognition performance. For a high reduction rate, we rec-
ommend to apply both CPCA and LDFT in combination. Third, with regard to
quantization, this thesis introduced the Spectral Bits and Phase Bits representations.
We recommend the Spectral Bits representation because of its better recognition per-
formance. This method quantizes the spectral minutiae features to a binary string of
around 10,000 bits. The Phase Bits representation consists of a shorter binary string,
of around 2,000 bits. In case that a shorter binary string is preferred, the Phase
Bits method can be the choice. The Spectral Bits and the Phase Bits can also be
concatenated in order to achieve a higher recognition performance.

The spectral minutiae representation scheme proposed in this thesis enables the com-
bination of fingerprint recognition systems with template protection based on the
helper data scheme. Furthermore, this scheme allows for a fast minutiae comparison,
which renders this scheme suitable as a pre-selector for a large-scale fingerprint identi-
fication system, thus significantly reducing the time to perform matching. The binary
spectral minutiae representation achieved an equal error rate of less than 1% on the
FVC2000-DB2 database when applying multi-sample enrolment. The fast compari-
son speed together with the promising recognition performance makes this spectral
minutiae scheme very applicable for real time applications.



Samenvatting

De term biometrie verwijst naar de technologieén die unieke fysieke (zoals vingeraf-
drukken, gezicht, iris) of gedragsmatige (zoals de handtekening, stem, lichaamshou-
ding) lichaamskenmerken van personen meten en analyseren met het doel individuen
te identificeren of de geclaimde identiteit te verifiéren. Herkenning van individuen
door middel van biometrische kenmerken wint aan belang vanwege verschillende re-
denen: ten eerste kunnen biometrische kenmerken, in tegenstelling tot wachtwoorden,
pincodes of pasjes, niet worden vergeten of verloren en zijn ze praktisch in gebruik; ze
zijn altijd voorhanden. Een tweede belangrijk voordeel is dat lichaamskenmerken goed
gekoppeld zijn aan een individu, dus niet gemakkelijk vervalsbaar of overdraagbaar.

Op dit moment is de vingerafdruk de meest gebruikte biometrische modaliteit. Ver-
geleken met diverse biometrische technieken, zoals gebaseerd op het gezicht, handteke-
ning en stem, heeft de vingerafdruk de hoogste niveaus van onderscheidend vermogen,
duurzaamheid en prestaties. Vingerafdrukherkenningssystemen hebben tegelijkertijd
de voordelen van zowel gebruiksvriendelijkheid als lage kosten. Tegenwoordig zijn veel
vingerafdrukherkenningssystemen gebaseerd op het vergelijken van minutiae. Minu-
tiae zijn de eindpunten en splitsingen in het lijnenspel van een vingerafdruk. Ze staan
bekend om het ongewijzigd blijven tijdens de levensduur van een individu en staan
een zeer discriminerende classificatie van vingerafdrukken toe.

Tegenwoordig wordt biometrische technologie in toenemende mate ingezet in civiele en
commerciéle toepassingen. Door het toenemende gebruik van biometrische gegevens
groeit de bezorgdheid over veiligheid van biometrische technologie en aantasting van
de individuele privacy. Door het opslaan van biometrische gegevens, die bekend staan
als biometrische templates, in een database ontstaat in potentie de mogelijkheid tot
koppeling met andere persoonlijke gegevens en zelfs identiteitsfraude. Een oplossing
is de toepassing van biometrische template bescherming technieken, die beogen het
terughalen van biometrische gegevens uit de templates onmogelijk te maken.

De onderzoeksvraag van dit proefschrift is hoe de vingerafdrukherkenningssystemen
te combineren met template bescherming. De vingerafdrukherkenningssystemen zijn



172 Samenvatting

gebaseerd op de vergelijking van de minutiae sets, de ongeordende verzameling van
minutiae locaties en oriéntaties die onderhevig zijn aan verschillende vervormingen,
zoals translatie, rotatie en schaal. Veel templatebeschermingssystemen vereisen echter
een geordende kenmerk vector met vaste lengte. De spectral minutiae representation
in dit proefschrift is een nieuwe methode die inderdaad de minutiae set representeert
als een kenmerk vector met vaste lengte, die invariant is voor translatie en waarbij
rotatie en schaal translaties worden, die gemakkelijk kunnen worden gecompenseerd.
Deze kenmerken maken het mogelijk vingerafdrukherkenningssystemen te combineren
met template bescherming gebaseerd op fuzzy commitment of helper data methoden.

In dit proefschrift worden drie spectral minutiae representation methodes voorgesteld:
de locatie-gebaseerde spectral minutiae representation (SML), de oriéntatie-gebaseerde
spectral minutiae representation (SMO) en de compleze spectral minutiae representa-
tion (SMC). SML encodeert minutiae locatie informatie, terwijl SMO en SMC zowel
minutiae locatie als oriéntatie informatie coderen. Uit de experimenten in dit proef-
schrift blijkt dat SMC de beste resultaten behaalt. Met betrekking tot de equal error
rate, heeft SMC een herkenningsprestatie welke 2 tot 4 keer beter is dan SML en
SMO.

Gebaseerd op de spectral minutiae kenmerken, presenteert dit proefschrift verder
bijdragen in drie onderzoeksrichtingen. In de eerste plaats geeft dit proefschrift ver-
schillende aanbevelingen om de herkenningsprestaties van SMC te verbeteren. Voor-
beelden hiervan zijn het gebruiken van minutiae kwaliteitsinformatie en multi-sample
fusion. In de tweede plaats, met betrekking tot kenmerk reductie, introduceert dit
proefschrift twee kenmerk reductie methoden, Column-PCA (CPCA) en Line-DFT
(LDFT), die de kenmerk dimensionaliteit effectief kan reduceren met 70% -80%, met
behoud van de herkenningsprestaties. Voor een grote reductie raden wij aan CPCA
en LDFT in combinatie toe te passen. Ten derde, gericht op kwantisatie, introduceert
dit proefschrift de Spectral Bits en Phase Bits representations. Wij bevelen de Spec-
tral Bits representation aan vanwege de betere herkenningsprestatie. Deze methode
kwantiseert de spectral minutiae kenmerken tot een binaire string van ongeveer 10,000
bits. De Phase Bits representatie genereert een kortere binaire string van ongeveer
2,000 bits. In het geval een kortere binaire string gewenst is, kan de Phase Bits me-
thode worden gekozen. De Spectral Bits en de Phase Bits methoden kunnen ook aan
elkaar gekoppeld worden om een betere herkenningsprestatie te bereiken.

De spectral minutiae representation methode voorgesteld in dit proefschrift maakt het
mogelijk vingerafdrukherkenningssystemen te combineren met template beveiliging
gebaseerd op helper data. Verder staat deze methode een snelle minutia vergelijking
toe, waardoor deze methode geschikt is als voorselectie binnen een groot vingerafdruk
identificatiesysteem, waarmee de tijd om een match te vinden sterk wordt gereduceerd.
De binaire spectral minutiae representation behaalt een equal error rate van minder
dan 1% met de FVC2000-DB2 database in het geval van multi-sample enrolment. De
hoge vergelijkingssnelheid tezamen met veelbelovende prestaties maken de spectral
minutiae erg geschikt voor real-time toepassingen.
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